114 results match your criteria: "Hospital Nacional de Paraplejicos SESCAM[Affiliation]"

Urine Haptoglobin and Haptoglobin-Related Protein Predict Response to Spironolactone in Patients With Resistant Hypertension.

Hypertension

April 2019

From the Laboratory of Immunoallergy and Proteomics, Department of Immunology (M.M.-L., P.J.M., A.S.-H., G.A.-L.), IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain.

Resistant hypertension prevalence is progressively increasing, and prolonged exposure to suboptimal blood pressure control results in higher cardiovascular risk and end-organ damage. Among various antihypertensive agents, spironolactone seems the most effective choice to treat resistant hypertension once triple therapy including a diuretic fails. However success in blood pressure control is not guaranteed, adverse effects are not negligible, and no clinical tools are available to predict patient's response.

View Article and Find Full Text PDF

Identification of six cardiovascular risk biomarkers in the young population: A promising tool for early prevention.

Atherosclerosis

March 2019

Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain; REDINREN, Madrid, Spain. Electronic address:

Background And Aims: The predictive value of traditional CV risk calculators is limited. Novel indicators of CVD progression are needed particularly in the young population. The main aim of this study was the identification of a molecular profile with added value to classical CV risk estimation.

View Article and Find Full Text PDF

Objective: The objective was to track and compare the progression of neuroplastic changes in a large animal model and humans with spinal cord injury.

Methods: A total of 37 individuals with acute traumatic spinal cord injury were followed over time (1, 3, 6, and 12 months post-injury) with repeated neurophysiological assessments. Somatosensory and motor evoked potentials were recorded in the upper extremities above the level of injury.

View Article and Find Full Text PDF

While the endocannabinoid 2-arachidonoylglycerol (2-AG) is thought to enhance the proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) in vitro, less is known about how endogenous 2-AG may influence the migration of these cells. When we assessed this in Agarose drop and Boyden chemotaxis chamber assays, inhibiting the sn-1-diacylglycerol lipases α and β (DAGLs) that are responsible for 2-AG synthesis significantly reduced the migration of OPCs stimulated by platelet-derived growth factor-AA (PDGF) and basic fibroblast growth factor (FGF). Likewise, antagonists of the CB1 and CB2 cannabinoid receptors (AM281 and AM630, respectively) produced a similar inhibition of OPC migration.

View Article and Find Full Text PDF

In vertebrates that regenerate the injured spinal cord, cells at the ependymal region proliferate and coordinate the formation of bridges between the lesion stumps. In mammals, these cells also proliferate profusely around the central canal after spinal cord injury, although their actual contribution to repair is controversial. In humans, however, the central canal disappears from early childhood in the majority of individuals, being replaced by astrocyte gliosis, ependymocyte clusters, and perivascular pseudo-rosettes.

View Article and Find Full Text PDF

Autophagy is an essential process of cellular waist clearance that becomes altered following spinal cord injury (SCI). Details on these changes, including timing after injury, underlying mechanisms, and affected cells, remain controversial. Here we present a characterization of autophagy in the mice spinal cord before and after a contusive SCI.

View Article and Find Full Text PDF

Cell fate events are regulated by different endogenous developmental factors such as the cell micro-environment, external or remote signals and epigenetic factors. Among the many regulatory factors, endocannabinoid-associated signalling pathways are known to conduct several of these events in the developing nervous system and in the adult brain. Interestingly, endocannabinoids exert modulatory actions in both physiological and pathological conditions.

View Article and Find Full Text PDF

Molecular signals on the cell surface are responsible for adhesion and communication. Of relevance in this respect, their chemical properties endow carbohydrates with the capacity to store a maximum of information in a minimum of space. One way to present glycans on the cell surface is their covalent conjugation to a ceramide anchor.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

View Article and Find Full Text PDF

2-AG limits Theiler's virus induced acute neuroinflammation by modulating microglia and promoting MDSCs.

Glia

July 2018

Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain.

The innate immune response is mediated by primary immune modulators such as cytokines and chemokines that together with immune cells and resident glia orchestrate CNS immunity and inflammation. Growing evidence supports that the endocannabinoid 2-arachidonoylglycerol (2-AG) exerts protective actions in CNS injury models. Here, we used the acute phase of Theiler's virus induced demyelination disease (TMEV-IDD) as a model of acute neuroinflammation to investigate whether 2-AG modifies the brain innate immune responses to TMEV and CNS leukocyte trafficking.

View Article and Find Full Text PDF

In the last few decades many efforts have been dedicated to decipher the nature and regenerative potential of neurogenic niches and endogenous stem cells after damage of the central nervous system. In the spinal cord, it has been largely focused on the ependymal region, which hosts neural precursors/stem cells (NSC) in rodents but differs between species and ages. In the current chapter, we detail our protocol to study the gene expression profile of this region using fresh frozen blocks of rat and human post-mortem spinal cords.

View Article and Find Full Text PDF

The mechanism underlying selective myelination of axons versus dendrites or neuronal somata relies on the expression of somatodendritic membrane myelination inhibitors (i.e. JAM2).

View Article and Find Full Text PDF

Citric Acid Metabolism in Resistant Hypertension: Underlying Mechanisms and Metabolic Prediction of Treatment Response.

Hypertension

November 2017

From the Department of Immunology, IIS-Fundacion Jimenez Diaz, REDinREN, Madrid, Spain (M.M.-L., P.J.M., F.V., G.A.-L.); Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos SESCAM, Toledo, Spain (M.B.-M., M.G.B.); Hypertension Unit, Instituto de Investigación imas12, Hospital Universitario 12 de Octubre, Madrid, Spain (G.R.-H., J.C.P., J.S., L.M.R.); Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, United Kingdom (F.d.l.C.); Department of Biochemistry and Molecular Biology I, Universidad Complutense, Madrid, Spain (F.V.); and Universidad Europea, Madrid, Spain (L.M.R.).

Resistant hypertension (RH) affects 9% to 12% of hypertensive adults. Prolonged exposure to suboptimal blood pressure control results in end-organ damage and cardiovascular risk. Spironolactone is the most effective drug for treatment, but not all patients respond and side effects are not negligible.

View Article and Find Full Text PDF

Albuminuria development in hypertensive patients is an indicator of higher cardiovascular (CV) risk and renal damage. Chronic renin-angiotensin system (RAS) suppression facilitates blood pressure control but it does not prevent from albuminuria development. We pursued the identification of protein indicators in urine behind albuminuria development in hypertensive patients under RAS suppression.

View Article and Find Full Text PDF

Recreational use of synthetic cannabinoids (SCB), a class of novel psychoactive substances is an increasing public health problem specifically in Western societies, with teenagers, young adults, and the prison population being the most affected. Some of these SCB are analogs of tetrahydrocannabinol, aminoalkylindoles, and other phytocannabinoid analogs have been detected in herbal preparations generically called "Spice." Spice, "K2" or "fake cannabis" is a general term used for variable herbal mixtures of unknown ingredients or chemical composition.

View Article and Find Full Text PDF

The protocol describes a novel, rapid, and no-wash one-step immunoassay for highly sensitive and direct detection of the complexes between matrix metalloproteinases (MMPs) and their tissue inhibitor of metalloproteinases (TIMPs) based on AlphaLISA technology. We describe two procedures: (i) one approach is used to analyze MMP-9-TIMP-1 interactions using recombinant human MMP-9 with its corresponding recombinant human TIMP-1 inhibitor and (ii) the second approach is used to analyze native or endogenous MMP-9-TIMP-1 protein interactions in samples of human plasma. Evaluating native MMP-9-TIMP-1 complexes using this approach avoids the use of indirect calculations of the MMP-9/TIMP-1 ratio for which independent MMP-9 and TIMP-1 quantifications by two conventional ELISAs are needed.

View Article and Find Full Text PDF

Albuminuria is an indicator of cardiovascular risk and renal damage in hypertensive individuals. Chronic renin-angiotensin system (RAS) suppression facilitates blood pressure control and prevents development of new-onset-albuminuria. A significant number of patients, however, develop albuminuria despite chronic RAS blockade, and the physiopathological mechanisms are underexplored.

View Article and Find Full Text PDF

Integrated Stress Response as a Therapeutic Target for CNS Injuries.

Biomed Res Int

March 2018

Laboratorio de Endocannabinoides y Neuroinflamación, School of Biosciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain.

Central nervous system (CNS) injuries, caused by cerebrovascular pathologies or mechanical contusions (e.g., traumatic brain injury, TBI) comprise a diverse group of disorders that share the activation of the integrated stress response (ISR).

View Article and Find Full Text PDF

Tissue-type plasminogen activator exerts EGF-like chemokinetic effects on oligodendrocytes in white matter (re)myelination.

Mol Neurodegener

February 2017

Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France.

Background: The ability of oligodendrocyte progenitor cells (OPCs) to give raise to myelin forming cells during developmental myelination, normal adult physiology and post-lesion remyelination in white matter depends on factors which govern their proliferation, migration and differentiation. Tissue plasminogen activator (tPA) is a serine protease expressed in the central nervous system (CNS), where it regulates cell fate. In particular, tPA has been reported to protect oligodendrocytes from apoptosis and to facilitate the migration of neurons.

View Article and Find Full Text PDF

A multicentric study to evaluate the use of relative retention times in targeted proteomics.

J Proteomics

January 2017

ProteoRed-ISCIII, Centro Nacional de Biotecnologia (CSIC), Madrid 28049, Spain. Electronic address:

Unlabelled: Despite the maturity reached by targeted proteomic strategies, reliable and standardized protocols are urgently needed to enhance reproducibility among different laboratories and analytical platforms, facilitating a more widespread use in biomedical research. To achieve this goal, the use of dimensionless relative retention times (iRT), defined on the basis of peptide standard retention times (RT), has lately emerged as a powerful tool. The robustness, reproducibility and utility of this strategy were examined for the first time in a multicentric setting, involving 28 laboratories that included 24 of the Spanish network of proteomics laboratories (ProteoRed-ISCIII).

View Article and Find Full Text PDF

Bile acids are steroid acids found in the bile of mammals. The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is neuroprotective in different animal models of stroke and neurological diseases. We have previously shown that TUDCA has anti-inflammatory effects on glial cell cultures and in a mouse model of acute neuroinflammation.

View Article and Find Full Text PDF

Every spring, deer cast their old antlers and initiate a regeneration process, which yields a new set of antlers of up to 1m in length. Over the course of three months, branches of the trigeminal nerve, originating from the frontal skull, innervate velvet, a modified skin that covers the regenerating antler. The rate of growth of these axons reaches up to 2cm per day making them the fastest regenerating axons in adult mammals.

View Article and Find Full Text PDF

Reducing cell death during the secondary injury is a major priority in the development of a cure for traumatic spinal cord injury (SCI). One of the earliest processes that follow SCI is the excitotoxicity resulting from the massive release of excitotoxicity mediators, including ATP, which induce an excessive and/or prolonged activation of their receptors and a deregulation of the calcium homeostasis. Diadenosine tetraphosphate (ApA) is an endogenous purinergic agonist, present in both extracellular and intracellular fluids, with promising cytoprotective effects in different diseases including neurodegenerative processes.

View Article and Find Full Text PDF

Following a central nervous system (CNS) injury, restoration of the blood-brain barrier (BBB) integrity is essential for recovering homeostasis. When this process is delayed or impeded, blood substances and cells enter the CNS parenchyma, initiating an additional inflammatory process that extends the initial injury and causes so-called secondary neuronal loss. Astrocytes and profibrotic mesenchymal cells react to the injury and migrate to the lesion site, creating a new glia limitans that restores the BBB.

View Article and Find Full Text PDF

The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in various animal models of neuropathologies. We have previously shown the anti-inflammatory properties of TUDCA in an animal model of acute neuroinflammation. Here, we present a new anti-inflammatory mechanism of TUDCA through the regulation of transforming growth factor β (TGFβ) pathway.

View Article and Find Full Text PDF