808 results match your criteria: "Hope Center for Neurological Disorders[Affiliation]"

Adult zebrafish have an innate ability to recover from severe spinal cord injury. Here, we report a comprehensive single nuclear RNA sequencing atlas that spans 6 weeks of regeneration. We identify cooperative roles for adult neurogenesis and neuronal plasticity during spinal cord repair.

View Article and Find Full Text PDF

Late-onset Alzheimer's disease (LOAD) is the most common form of Alzheimer's disease (AD). However, modeling sporadic LOAD that endogenously captures hallmark neuronal pathologies such as amyloid-β (Aβ) deposition, tau tangles, and neuronal loss remains an unmet need. We demonstrate that neurons generated by microRNA (miRNA)-based direct reprogramming of fibroblasts from individuals affected by autosomal dominant AD (ADAD) and LOAD in a three-dimensional environment effectively recapitulate key neuropathological features of AD.

View Article and Find Full Text PDF

In albino mice and EphB1 knock out mice, mistargeted retinal ganglion cell (RGC) axons form dense islands of axon terminals in the dorsal lateral geniculate nuclei (dLGN). The formation of these islands of retinal input depends on developmental patterns of spontaneous retinal activity. We reconstructed the microcircuitry of the activity dependent islands and found that the boundaries of the island represent a remarkably strong segregation within retinogeniculate connectivity.

View Article and Find Full Text PDF
Article Synopsis
  • Phase 3 trials have shown that antiamyloid therapies are more effective in patients with milder Alzheimer disease, highlighting the need for plasma biomarkers in screening cognitively unimpaired individuals at risk of amyloid accumulation.
  • This longitudinal study aimed to determine if a combination of specific plasma biomarkers could predict the onset of Aβ pathology in cognitively unimpaired individuals with low baseline brain Aβ levels.
  • Results from multiple cohorts revealed that combining plasma %p-tau217 and Aβ42/40 levels significantly improved the detection of abnormal Aβ status, indicating a promising strategy for early intervention in Alzheimer's disease.
View Article and Find Full Text PDF

A Nature Medicine paper published in January 2024 describes eight cases of iatrogenic Alzheimer's disease in individuals who received cadaveric pituitary-derived human growth hormone. The paper's conclusions argue for the transmissibility of Alzheimer's disease, which, if true, would create a significant public health crisis. For example, neurosurgical practices would require substantial revision, and many individuals who have undergone neurosurgical procedures would now be at considerable risk of Alzheimer's disease.

View Article and Find Full Text PDF

Multimerization of TREM2 is impaired by Alzheimer's disease-associated variants.

Alzheimers Dement

September 2024

Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA.

Article Synopsis
  • TREM2 is a significant genetic risk factor for Alzheimer's disease (AD) and is a target for potential therapies, with a focus on its multimerization mechanism.
  • Molecular dynamics simulations showed that TREM2 trimers are stabilized by a salt bridge between specific residues, but AD-related variants disrupt this interaction, diminishing TREM2 function.
  • The findings highlight how certain TREM2 variants increase AD risk by preventing proper multimerization, affecting its normal activity.
View Article and Find Full Text PDF

Advancements in APOE and dementia research: Highlights from the 2023 AAIC Advancements: APOE conference.

Alzheimers Dement

September 2024

Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA.

Introduction: The apolipoprotein E gene (APOE) is an established central player in the pathogenesis of Alzheimer's disease (AD), with distinct apoE isoforms exerting diverse effects. apoE influences not only amyloid-beta and tau pathologies but also lipid and energy metabolism, neuroinflammation, cerebral vascular health, and sex-dependent disease manifestations. Furthermore, ancestral background may significantly impact the link between APOE and AD, underscoring the need for more inclusive research.

View Article and Find Full Text PDF

Plasma phosphorylated-tau 217 (p-tau217) is currently the most promising biomarkers for reliable detection of Alzheimer's disease (AD) pathology. Various p-tau217 assays have been developed, but their relative performance is unclear. We compared key plasma p-tau217 tests using cross-sectional and longitudinal measures of amyloid-β (Aβ)-PET, tau-PET, and cognition as outcomes, and benchmarked them against cerebrospinal fluid (CSF) biomarker tests.

View Article and Find Full Text PDF
Article Synopsis
  • The Knight-Alzheimer Disease Research Center at Washington University has been at the forefront of Alzheimer disease research for over 40 years, significantly enhancing our understanding through various studies on cognitive and molecular aspects.
  • Over 26,000 biological samples have been collected from participants, including DNA, RNA, plasma, and cerebrospinal fluid, to support extensive research on dementia and aging.
  • The Genetics and High Throughput -Omics core has conducted in-depth molecular profiling to discover new risk factors, biomarkers, and potential treatment targets for Alzheimer disease.
View Article and Find Full Text PDF

An emerging role for the gut microbiome in tauopathy.

Neurotherapeutics

October 2024

Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA, 63110. Electronic address:

Tauopathies constitute a group of neurodegenerative diseases characterized by abnormal aggregation of the protein tau, progressive neuronal and synaptic loss, and eventual cognitive and motor impairment. In this review, we will highlight the latest efforts investigating the intricate interplay between the gut microbiome and tauopathies. We discuss the physiological interactions between the microbiome and the brain as well as clinical and experimental evidence that suggests that the presence of tauopathy alters the composition of gut microbiota.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a complex, progressive primary neurodegenerative disease. Since pivotal genetic studies in 1993, the ε4 allele of the apolipoprotein E gene (APOE ε4) has remained the strongest single genome-wide associated risk variant in AD. Scientific advances in APOE biology, AD pathophysiology and ApoE-targeted therapies have brought APOE to the forefront of research, with potential translation into routine AD clinical care.

View Article and Find Full Text PDF

Comparative genomics has revealed the rapid expansion of multiple gene families involved in immunity. Members within each gene family often evolved distinct roles in immunity. However, less is known about the evolution of their epigenome and cis-regulation.

View Article and Find Full Text PDF

Seq-ing mechanisms behind types of Alzheimer's disease.

Neuron

June 2024

Department of Neurology, Hope Center for Neurological Disorders, and Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address:

Sporadic Alzheimer's disease (AD) and autosomal dominant Alzheimer's disease (ADAD) share pathological features, but differing mechanisms, leading to disease. In this issue of Neuron, Almeida, Eger, et al. uncovered molecular processes that may distinguish sporadic AD from ADAD and how the APOE-Christchurch variant may be protective.

View Article and Find Full Text PDF

Co-aggregation with Apolipoprotein E modulates the function of Amyloid-β in Alzheimer's disease.

Nat Commun

June 2024

Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK.

Which isoforms of apolipoprotein E (apoE) we inherit determine our risk of developing late-onset Alzheimer's Disease (AD), but the mechanism underlying this link is poorly understood. In particular, the relevance of direct interactions between apoE and amyloid-β (Aβ) remains controversial. Here, single-molecule imaging shows that all isoforms of apoE associate with Aβ in the early stages of aggregation and then fall away as fibrillation happens.

View Article and Find Full Text PDF

An inducible genetic tool to track and manipulate specific microglial states reveals their plasticity and roles in remyelination.

Immunity

June 2024

Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Brain Immunology and Glia (BIG) Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine in St. Louis, School of Medicine, St. Louis, MO 63110, USA. Electronic address:

Recent single-cell RNA sequencing studies have revealed distinct microglial states in development and disease. These include proliferative-region-associated microglia (PAMs) in developing white matter and disease-associated microglia (DAMs) prevalent in various neurodegenerative conditions. PAMs and DAMs share a similar core gene signature.

View Article and Find Full Text PDF

Introduction: Recent genome-wide association studies (GWAS) have reported a genetic association with Alzheimer's disease (AD) at the TNIP1/GPX3 locus, but the mechanism is unclear.

Methods: We used cerebrospinal fluid (CSF) proteomics data to test (n = 137) and replicate (n = 446) the association of glutathione peroxidase 3 (GPX3) with CSF biomarkers (including amyloid and tau) and the GWAS-implicated variants (rs34294852 and rs871269).

Results: CSF GPX3 levels decreased with amyloid and tau positivity (analysis of variance P = 1.

View Article and Find Full Text PDF
Article Synopsis
  • Neuronal dysfunction is a key aspect of neurodegenerative tauopathies, but immune cells like microglia also play a significant role in the disease's progression.
  • This study shows that tau mRNA and protein are present in microglia and that a specific tau mutation (IVS10+16) can change how these immune cells behave, causing issues like cytoskeletal problems and stalled phagocytosis.
  • Secretions from microglia with this mutation negatively affect neuron health, leading to decreased synaptic density, and similar characteristics were observed in human brain samples from mutation carriers, suggesting important implications for future therapies.
View Article and Find Full Text PDF

mosGraphGen: a novel tool to generate multi-omics signaling graphs to facilitate integrative and interpretable graph AI model development.

bioRxiv

August 2024

Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.

Multi-omics data, i.e., genomics, epigenomics, transcriptomics, proteomics, characterize cellular complex signaling systems from multi-level and multi-view and provide a holistic view of complex cellular signaling pathways.

View Article and Find Full Text PDF

Objective: The mechanistic target of rapamycin (mTOR) pathway has been implicated in promoting epileptogenesis in animal models of acquired epilepsy, such as posttraumatic epilepsy (PTE) following traumatic brain injury (TBI). However, the specific anatomical regions and neuronal populations mediating mTOR's role in epileptogenesis are not well defined. In this study, we tested the hypothesis that mTOR activation in dentate gyrus granule cells promotes neuronal death, mossy fiber sprouting, and PTE in the controlled cortical impact (CCI) model of TBI.

View Article and Find Full Text PDF

Introduction: Disrupted sleep is common in individuals with Alzheimer's disease (AD) and may be a marker for AD risk. The timing of sleep affects sleep-wake activity and is also associated with AD, but little is known about links between sleep architecture and the midpoint of sleep in older adults. In this study, we tested if the midpoint of sleep is associated with different measures of sleep architecture, AD biomarkers, and cognitive status among older adults with and without symptomatic AD.

View Article and Find Full Text PDF

Unbiased data-driven omic approaches are revealing the molecular heterogeneity of Alzheimer disease. Here, we used machine learning approaches to integrate high-throughput transcriptomic, proteomic, metabolomic, and lipidomic profiles with clinical and neuropathological data from multiple human AD cohorts. We discovered 4 unique multimodal molecular profiles, one of them showing signs of poor cognitive function, a faster pace of disease progression, shorter survival with the disease, severe neurodegeneration and astrogliosis, and reduced levels of metabolomic profiles.

View Article and Find Full Text PDF

Genetic variants in the () gene affect the onset and progression of Alzheimer's disease (AD). The Christchurch ( Ch) variant has been identified as the most prominent candidate for preventing the onset and progression of AD. In this study, we generated isogenic Ch/Ch human-induced pluripotent stem cells (iPSCs) from / healthy control female iPSCs and induced them into astrocytes.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates early Alzheimer's disease changes in the brains of people with Down syndrome and those with genetic variants linked to Alzheimer's, aiming to better understand disease development and improve prevention strategies.
  • Using cross-sectional data from two cohort studies, researchers analyzed tau protein spread and its relationship with amyloid accumulation in participants aged 25 and older.
  • Findings revealed significant differences in the pattern and timing of tau accumulation in the two groups, suggesting implications for early intervention and clinical trials targeting Alzheimer's pathology.
View Article and Find Full Text PDF

The immune system substantially influences age-related cognitive decline and Alzheimer's disease (AD) progression, affected by genetic and environmental factors. In a Mayo Clinic Study of Aging cohort, we examined how risk factors like APOE genotype, age, and sex affect inflammatory molecules and AD biomarkers in cerebrospinal fluid (CSF). Among cognitively unimpaired individuals over 65 ( = 298), we measured 365 CSF inflammatory molecules, finding age, sex, and diabetes status predominantly influencing their levels.

View Article and Find Full Text PDF