375 results match your criteria: "Ho Chi Minh City University of Technology-HCMUT[Affiliation]"

Development of a bioreactor with an integrated non-dispersive infrared CO sensor for rapid and sensitive detection of Cr(VI) toxicity in water.

J Hazard Mater

January 2025

Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, HCM City,  Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Viet Nam. Electronic address:

Whole-cell bioreactors equipped with external physico-chemical sensors have gained attention for real-time toxicity monitoring. However, deploying these systems in practice is challenging due to potential interference from unknown wastewater constituents with liquid-contacted sensors. In this study, a novel approach using a bioreactor integrated with a non-dispersive infrared CO₂ sensor for both toxicity detection and real-time monitoring of microbial growth phases was successfully demonstrated.

View Article and Find Full Text PDF

Fabricating ZnO@C composites based on shell-derived cellulose for high performance lithium-ion battery anodes.

Heliyon

December 2024

Department of Chemical, Biological & Battery Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.

In this study, shell-derived cellulose was successfully produced, and the hydrothermal method was employed to generate ZnO@C (ZOC) composites, which were then subjected to calcination in N gas at a temperature of 600 °C for varying durations. X-ray diffraction and thermogravimetric analyses demonstrated that the annealing duration had a substantial impact on the quantities of C and ZnO in the ZOC composites. The scanning electron microscope images indicated the presence of ZnO nanoparticles on the surface of the C phase and revealed a similar morphology among the ZOC composites.

View Article and Find Full Text PDF

The state-of-the-art, simple and scalable methods for lignin micro-/nano-particles recovery from agricultural biomasses were evaluated in this review. Being non-wood biomasses, these materials can be easily fibrillated, supporting the usage of mild soda or organic solvent pretreatment. Different approaches in particle recovery were compared to conclude that the bottom-up approach facilitates smaller particles towards the nano-size range whereas mechanical treatment can act as a supporting method to increase uniformity and reduce particle sizes after bottom-up precipitation.

View Article and Find Full Text PDF

A multi-channel bioimpedance-based device for Vietnamese hand gesture recognition.

Sci Rep

December 2024

Department of Biomedical Engineering, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, 700000, Vietnam.

This study addresses the growing importance of hand gesture recognition across diverse fields, such as industry, education, and healthcare, targeting the often-neglected needs of the deaf and dumb community. The primary objective is to improve communication between individuals, thereby enhancing the overall quality of life, particularly in the context of advanced healthcare. This paper presents a novel approach for real-time hand gesture recognition using bio-impedance techniques.

View Article and Find Full Text PDF

Diabetes mellitus is a chronic metabolic disorder that can cause elevated blood glucose levels due to impaired insulin secretion or resistance. Different parts of have been used widely in traditional medicine to treat many disorders. The present study aims to evaluate the antidiabetic ability of the corm, pseudostem, inflorescence, fruit, peel, and seed of via in vitro experiments by inhibiting α-amylase and α-glucosidase enzymes as well as in vivo models on diabetic alloxan-induced mice.

View Article and Find Full Text PDF

The drivetrain is an essential component of the diesel firefighting pump system, affecting the engine's operating mode, power, economy, and environment. This study proposes a process to design and optimize the transmission ratio and working load of the diesel firefighting pump system. AVL BOOST software was used to model the 6-cylinder diesel engine and analyze the performance characteristics at its partial loads as parameters for finding the optimal transmission ratio of the drivetrain.

View Article and Find Full Text PDF

Mapping of high-resolution daily particulate matter (PM) concentration at the city level through a machine learning-based downscaling approach.

Environ Monit Assess

December 2024

Faculty of Information Technology, University of Engineering and Technology, Vietnam National University Hanoi, E3 Building, 144 Xuan Thuy Street, Dich Vong Hau Ward, Cau Giay District, Ha Noi, 100000, Vietnam.

PM pollution is a major global concern, especially in Vietnam, due to its harmful effects on health and the environment. Monitoring local PM levels is crucial for assessing air quality. However, Vietnam's state-of-the-art (SOTA) dataset with a 3 km resolution needs to be revised to depict spatial variation in smaller regions accurately.

View Article and Find Full Text PDF

Influence of UV wavelength variations on tetracycline adsorption by polyethylene microplastics in aquatic environments.

Sci Total Environ

December 2024

Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan. Electronic address:

The effect of ultraviolet (UV) light on structural changes is a significant concern, particularly regarding the weathering and aging effects on microplastics (MPs). This research focused on examining how various UV light wavelengths (UVC, UVB, and UVA) influence the adsorption behavior of aged polyethylene (PE) MPs toward tetracycline (TC). To explore the adsorption mechanism in detail, adsorption kinetics were studied under different UV light wavelengths.

View Article and Find Full Text PDF

Wastewater treatment based on microalgae and bacteria symbiosis is an environmentally friendly, sustainable technology that has attracted attention recently because of its high efficiency in treating pollutants, saving energy, and short-term biomass recovery. Among them, the granular microalgae and bacteria combination emerges with the advantages of rapid gravity settling, good resistance to adverse environmental conditions, outstanding wastewater treatment performance, and easy biomass recovery. This review aims to clarify the microalgal-bacterial granule (MBG) - based process for wastewater treatment.

View Article and Find Full Text PDF

An automatic programming tool has become an essential component in virtual fabrication in recent years. This paper aims to propose a methodology of virtual fabrication for semiconductor devices and design a tool called Technology Computer-Aided Design Automatic Simulation (TCADAS) which can perform a completely virtual fabrication, device simulation, process variation, and output extraction. Especially, the TCADAS tool eliminates drudgery when studying semiconductor devices such as complexity in setting inputs, substantial manual work, and long run time of simulations.

View Article and Find Full Text PDF

Dipicolinic acid (DPA) is a key biomarker of bacterial spores. In this study, we present a novel distance-based paper analytical device (d-PAD) for the fluorescence sensing of DPA. The detection mechanism relies on the complexation of ofloxacin (OFL) with Cu ions, where Cu quenches the fluorescence of OFL static quenching.

View Article and Find Full Text PDF

Cashew nut testa, a by-product of cashew nut processing, is abundant in phenolic compounds and exhibits strong antioxidant properties, making it a potential additive for enhancing the antioxidant properties of biodegradable films used in food packaging. This study explores the fabrication of biodegradable chitosan/polyvinyl alcohol films incorporating varying concentrations of cashew nut testa extract (CNTE; 0, 1, 2 and 3% v/v) and evaluates their physical, structural, mechanical, optical and antioxidant properties. The results demonstrate that increasing extract concentration generally increased the thickness, tensile strength, Young's modulus, thermal stability and antioxidant capacity of the films, while reducing the moisture content, swelling degree, elongation at break, and light transmittance.

View Article and Find Full Text PDF

A simple grinding method using polyvinylpyrrolidone (PVP) as a capping agent is introduced to synthesize CoFeO nanoparticles. The effects of calcination temperature (ranging from 450 to 850 °C) on the structural, morphological, physical, and optical properties of the materials are investigated using various techniques, including thermogravimetric analysis/differential scanning calorimetry (TGA/DSC), powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), N adsorption isotherm, ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), and vibrating sample magnetometry (VSM). The presence of PVP significantly suppresses the agglomeration of the materials, resulting in a nanocrystalline size of 18 nm for a sample calcined at 650 °C, which is approximately 38% smaller than that of the sample synthesized without PVP.

View Article and Find Full Text PDF

Copper-Catalyzed Cascade Cyclization of 2-Nitrochalcones with NH-Heterocycles.

J Org Chem

December 2024

VNU-HCM Key Laboratory for Structures of Advanced Materials, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 84, Vietnam.

We developed a method for allowing cascade cyclization of 2-nitrochalcones with pyrazoles, imidazole, and indazole in the presence of CuI catalyst, DBU base, and THF solvent. The conditions were tolerant of an array of useful functionalities including ester, nitro, cyano, halogen groups. A mechanistic consideration was also provided, as HO was presumably a byproduct.

View Article and Find Full Text PDF

The growing demand for electronic storage devices with faster charging rates, higher energy capacities, and longer cycle lives has led to significant advancements in supercapacitor technology. These devices typically utilize high-surface-area carbon-based materials as electrodes, which provide excellent power densities and cycling stability. However, challenges such as inadequate electrolyte interaction, hydrophobicity that impedes ion transport, and high manufacturing costs restrict their effectiveness.

View Article and Find Full Text PDF

The data in this work provides the effect of aging temperature on manganese oxide allotropes prepared by hydrothermal method in the presence of boron dopant. The synthesized samples were labeled as B/MnO -100, B/MnO -150, and B/MnO -180 corresponding to the hydrothermal temperature at 100, 150, and 180 °C, respectively. X-ray diffraction (XRD) and inductively coupled plasma mass spectrometry (ICP-MS) methods were conducted to clarify the crystalline structure, as well as the amount of potassium, manganese, and boron elements in the three synthesized samples.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the health benefits of the Colla plant, particularly its effects on three enzymes: xanthine oxidase, lipase, and tyrosinase.
  • The seeds of the plant showed the strongest inhibition capacity for all three enzymes, while the fruit and corm also demonstrated notable performance in specific enzyme inhibition.
  • This research highlights the potential uses of various parts of the Colla plant in medical aesthetics, dietary supplements, and medicine, marking the first comprehensive report on its biological activities in Vietnam.
View Article and Find Full Text PDF

Boron-doped scandium clusters B@Sc with = 2-13: uncovering the smallest endohedrally doped cages.

RSC Adv

October 2024

Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam.

Article Synopsis
  • A study using density functional theory examines both pure scandium (Sc) and boron-doped Sc clusters, identifying B@Sc clusters as the smallest doped cages with an octahedral shape.
  • The research indicates a size-dependent transition in the clusters at a specific size (N=6), changing the placement of the B atom from outside to inside the Sc cage.
  • B doping improves the stability of Sc clusters, promotes high spin states, and reveals energy differences among stable spin states through molecular orbital analysis.
View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates NaMgCl as a potential solid-state electrolyte for Na-batteries, finding it has an energy gap of about 5 eV due to the unique arrangement of its ionic units.
  • - NaMgCl demonstrates mechanical stability and ductility, making it feasible for manufacturing, which can enhance electrolyte/electrode contact and boost battery performance.
  • - Its electrochemical properties include an open cell voltage of 1.2 V, a theoretical capacity of 133 mA h g, and excellent conductivity at room temperature (1.26 mS cm), comparable to existing superionic conductors.
View Article and Find Full Text PDF

To meet various industrial requirements such as ease of motion, scalability, and cost efficiency, it is necessary to innovate the design of robotic platforms. In this research, a novel approach, from mechanical design to control implementation, is introduced for launching a robotic platform using a parallelogram mechanism. First, a reverse engineering process is applied, progressing from kinematics to dynamics.

View Article and Find Full Text PDF

Enhancing the degradation of microplastics through combined KMnO oxidation and UV radiation.

J Environ Manage

November 2024

Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan. Electronic address:

The pervasive issue of microplastics in aquatic environments presents a formidable challenge to traditional water treatment methodologies, including those utilizing KMnO. This study pioneers advanced oxidation processes (AOPs) method aimed at improving the degradation of PE microplastics by employing a dual treatment strategy that combines KMnO oxidation with UV irradiation. Detailed analysis of the surface modifications and chemical functional groups of the treated PE microplastics revealed the establishment of Mn-O-Mn linkages on their surfaces.

View Article and Find Full Text PDF

Microstructure, Mechanical Properties and Corrosion Performance of Laser-Welded NiTi Shape Memory Alloy in Simulated Body Fluid.

Materials (Basel)

September 2024

Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Gyeonggi-do, Republic of Korea.

Laser-welding is a promising technique for welding NiTi shape memory alloys with acceptable tensile strength and comparable corrosion performance for biomedical applications. The microstructural characteristics and localized corrosion behavior of NiTi alloys in a simulated body fluid (SBF) environment are evaluated. A microstructural examination indicated the presence of fine and equiaxed grains with a B2 austenite phase in the base metal (BM), while the weld metal (WM) had a coarse dendritic microstructure with intermetallic precipitates including TiNi and NiTi.

View Article and Find Full Text PDF

Preparation strategies, properties highlights, and emerging applications across environmental, biological, and energy industries of silver-loaded graphitic carbon nitride: A critical review.

Adv Colloid Interface Sci

December 2024

VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam. Electronic address:

In light of escalating environmental pollution and tremendous energy shortage, the development of multifunctional materials with diverse applications across biomedical and energy production platforms has become imperative. Among this domain, nanostructured heterogeneous composites based on semiconductors are exclusively promising owing to their distinct configurations. Notably, graphitic carbon nitride (g-CN (CN)) has drawn substantial interest as a sustainable candidate with surface functionality, electron-rich nature, and interconnected conjugation system along the polymeric matrix.

View Article and Find Full Text PDF

Enhanced pollution removal from canal water by coupling aeration to floating treatment wetlands.

Int J Phytoremediation

December 2024

Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam.

Article Synopsis
  • Floating treatment wetlands (FTWs) are being studied for their effectiveness in cleaning polluted water and enhancing urban landscapes, with a focus on whether aeration can improve their performance.
  • The research compared FTWs with and without aeration, using plant species and measuring the removal efficiency of contaminants like COD and NH-N, while varying air flow rates in the aerated tanks.
  • Results showed that aeration significantly increased the removal rates of pollutants (up to 99%) and boosted plant growth rates, with the aerated FTWs demonstrating nearly a two-fold increase in growth compared to non-aerated ones.
View Article and Find Full Text PDF

Open wounds present a significant challenge in healthcare, requiring careful management to prevent infection and promote wound healing. Advanced wound dressings are critical need to enhance their hemostatic capabilities, antimicrobial properties, and ability to support angiogenesis and sustained moisture for optimal healing. This study introduces a flexible hemostatic dressing designed for open wounds, integrating chitosan (CS) for hemostasis and biocompatibility, silk fibroin (SF) for mechanical strength, and montmorillonite (MMT) for enhanced drug transport.

View Article and Find Full Text PDF