5,377 results match your criteria: "Henan Normal University.[Affiliation]"

Improved Methods for the Synthesis of BH and -Heterocycle-Coordinated BH (-Het·BH).

Inorg Chem

January 2025

School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Materials, Henan Normal University, Xinxiang, Henan 453007, China.

Improved methods for the synthesis of BH and a series of -heterocycle-coordinated BH complexes (-Het·BH) have been developed with readily obtained KBH as the starting material. Oxidation of KBH could provide BH in over 90% yield. Then, the -Het·BH complexes were prepared from the as-synthesized BH through in situ multistep reactions by reacting with NaH, -heterocycles, and dilute hydrochloric acid.

View Article and Find Full Text PDF

YAP/TAZ as master regulators in liver regeneration and disease: insights into mechanisms and therapeutic targets.

Mol Biol Rep

December 2024

State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.

Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key downstream effectors of the Hippo pathway that regulate organ size, tissue homeostasis, and cancer development. YAP/TAZ play crucial regulatory roles in organ growth, cell proliferation, cell renewal, and regeneration. Mechanistically, YAP/TAZ influence the occurrence and progression of liver regeneration (LR) through various signaling pathways, including Notch, Wnt/β-catenin, TGF-β/Smad.

View Article and Find Full Text PDF

In addition to non-pharmaceutical interventions, antiviral drugs and vaccination are considered as the optimal solutions to control and eliminate the COVID-19 pandemic. It is necessary to couple within-host and between-host models to investigate the impact of treatment and vaccination. Hence, we propose an age-structured model, where the infection age is used to link the within-host viral dynamics and the disease dynamics at the population level.

View Article and Find Full Text PDF

Red Room Temperature Phosphorescence from Lignin.

Angew Chem Int Ed Engl

December 2024

Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China.

Materials with red room-temperature phosphorescence (RTP) derived from sustainable resources are crucial but rarely reported. Here, we produced red RTP materials from lignin. Lignin was covalently modified with Upy (1-(6-isocyanatohexyl)-3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl) urea) to obtain Lig-Upy.

View Article and Find Full Text PDF

Heterocoupling Two Similar Benzyl Radicals by Dual Photoredox/Cobalt Catalysis.

Angew Chem Int Ed Engl

December 2024

College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China.

Transition-metal-regulated radical cross coupling enables the selective bonding of two distinct transient radicals, whereas the catalytic method for sorting two almost identical transient radicals, especially similar benzyl radicals, is still rare. Herein, we show that leveraging dual photoredox/cobalt catalysis can selectively couple two similar benzyl radicals. Using easily accessible methylarenes and phenylacetates (benzyl N-hydroxyphthalimide (NHPI) esters) as benzyl radical sources, a range of unsymmetrical 1,2-diarylethane classes via the 1°-1°, 1°-2°, 1°-3°, 2°-2°, 2°-3° and 3°-3° couplings were obtained with broad functional group tolerance.

View Article and Find Full Text PDF

Electrochemical reduction of naturally abundant nitrogen (N) under ambient conditions is a promising method for ammonia (NH) synthesis, while the development of a highly active, stable and low-cost catalyst remains a challenge. Herein, the N reduction reaction of TM@g-BCN in electrochemical nitrogen reduction has been systematically investigated using density functional theory (DFT) calculations and compared with that of TM@g-CN. It was found that TM atoms are more stably anchored to g-BCN than to g-CN.

View Article and Find Full Text PDF

Confinement of metal species in porous supports is an effective strategy to optimize hydrogenation performance ascribing to tunable nanopore environments. However, only focusing on the electronic structure modulation for metal species has limited the design of improved catalysts. Herein, spatial confinement strategy is reported for constructing ultrasmall metal clusters in nitro-bonded COF (M@TpPa-NO, M = Pd, Pt, Ru, Rh, Ir).

View Article and Find Full Text PDF

Purpose: Prior research has indicated that mobile phone addiction (MPA) significantly contributes to depression. However, there is a research gap in exploring the distinct impacts of various types of MPA on depression, along with the potential moderating effect of gender. The current study investigated whether the relationship between MPA and depression varies depending on the types of MPA and gender.

View Article and Find Full Text PDF

Near-Infrared Organic Small-Molecule Photosensitizer With O Self-Supply for Cancer Photodynamic-Photothermal Synergistic Therapy.

Small

December 2024

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.

Tumor hypoxia and heat resistance as well as the light penetration deficiency severely compromise the phototherapeutic efficacy, developing phototherapeutic agents to overcome these issues has been sought-after goal. Herein, a diradical-featured organic small-molecule semiconductor, namely TTD-CN, has been designed to show low exciton binding energy of 42 meV by unique dimeric π-π aggregation, promoting near-infrared (NIR) absorption beyond 808 nm and effective photo-induced charge separation. More interestingly, its redox potentials are tactfully manipulated for water splitting to produce O and reduction of O to generate O .

View Article and Find Full Text PDF

The widespread application of layered oxides is constrained by their low electrochemical performance and complex irreversible phase transition. The high entropy oxide NaNiFeMnTiSnCoLiO (HEO) is synthesized by leveraging the entropy stabilization effect, which offers a partial solution to this issue, but electrochemical performance and air stability imperative to be improved. On the high entropy oxide HEO, due to the strong bond energy of Ce-O, the introduction of Ce improves the specific discharge capacity and reduces the battery gas production problem.

View Article and Find Full Text PDF

Adhesive and antibacterial guar gum-based nanocomposite hydrogel for remodeling wound healing microenvironment.

Int J Biol Macromol

December 2024

Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China. Electronic address:

Hydrogels are promising wound dressings due to their extracellular matrix-like properties and tunable structure-function characteristics. Besides the physical isolation effect, hydrogel dressings are highly expected to possess tissue-adhesive performance and antibacterial capacity, which are beneficial for their clinical translations. Herein, a guar gum (GG)-based nanocomposite hydrogel was fabricated by mixing methacrylated GG (GGMA), acrylic acid, acrylated 3-aminophenylboronic acid, mangiferin (MF)-loaded cetyltrimethyl ammonium chloride (CTAC) micelles (MF@CTAC) and radical initiator.

View Article and Find Full Text PDF

Interfacial hydrogen bonds induced by porous FeCr bimetallic atomic sites for efficient oxygen reduction reaction.

J Colloid Interface Sci

December 2024

State Key Laboratory of Catalysis-Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. Electronic address:

Interfacial hydrogen bonds are pivotal in enhancing proton activity and accelerating the kinetics of proton-coupled electron transfer during electrocatalytic oxygen reduction reaction (ORR). Here we propose a novel FeCr bimetallic atomic sites catalyst supported on a honeycomb-like porous carbon layer, designed to optimize the microenvironment for efficient electrocatalytic ORR through the induction of interfacial hydrogen bonds. Characterizations, including X-ray absorption spectroscopy and in situ infrared spectroscopy, disclose the rearrangement of delocalized electrons due to the formation of FeCr sites, which facilitates the dissociation of interfacial water molecules and the subsequent formation of hydrogen bonds.

View Article and Find Full Text PDF

Rice, a staple in diets, undergoes digestion post-consumption, often triggering a swift surge in blood sugar among diabetics, intensifying their health burden. Notably, resistant starch (RS) emerges as a potent ally in fostering satiety and mitigating metabolic syndrome in diabetes. The SBEIIb gene, a key orchestrator of starch branching enzymes, plays a pivotal role in starch synthesis, and its genetic alteration can dramatically boost RS content in rice.

View Article and Find Full Text PDF

This study presents the indium-mediated three-component radical Reformatsky-type allylation of --butanesulfinyl iminoester with 1,3-butadiene. This novel approach offers a rapid synthesis pathway to valuable homoallylic noncanonical amino acids, demonstrated with over 30 examples showing nice regio- and diastereoselectivity. Mechanism studies revealed that allylindium complexes served as key intermediates, formed through a single-electron reduction of allylic radicals by Indium species.

View Article and Find Full Text PDF

Buried hole-selective interface engineering for high-efficiency tin-lead perovskite solar cells with enhanced interfacial chemical stability.

Sci Bull (Beijing)

December 2024

Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China. Electronic address:

Mixed Sn-Pb perovskites are attracting significant attention due to their narrow bandgap and consequent potential for all-perovskite tandem solar cells. However, the conventional hole transport materials can lead to band misalignment or induce degradation at the buried interface of perovskite. Here we designed a self-assembled material 4-(9H-carbozol-9-yl)phenylboronic acid (4PBA) for the surface modification of the substrate as the hole-selective contact.

View Article and Find Full Text PDF

Synthesis of dolutegravir derivatives modified by 1,2,3-triazole structure and their anti-inflammatory activity in LPS-induced BV2 cells.

Bioorg Med Chem Lett

March 2025

Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China. Electronic address:

Given the promising anti-inflammatory activity of the HIV integrase inhibitor dolutegravir and the widespread use of the 1,2,3-triazole structure in anti-inflammatory drug development, this study aimed to enhance dolutegravir's efficacy by introducing a 1,2,3-triazole group. As a result, four series of dolutegravir derivatives were synthesized. Screening these derivatives for anti-inflammatory activity in microglial cells revealed that compound 6k demonstrated the most potent anti-inflammatory effect without significant cytotoxicity.

View Article and Find Full Text PDF

Background: The phytohormone salicylic acid (SA) serves as a crucial signaling molecule within the realm of plant immunity, playing an indispensable role in both local and systemic acquired resistance (SAR). N-hydroxypipecolic acid (NHP), a derivative of L-lysine, is integral to the induction of SAR. Recent investigations have illuminated the intricate manner in which NHP orchestrates the establishment of SAR in conjunction with the immune signal SA.

View Article and Find Full Text PDF

The beet webworm (BWW), Loxostege sticticalis (L.), is a notorious migratory agriculture pest of crops and fodder plants, inducing sudden outbreaks and huge losses of food and forage production. Quantifying its spatiotemporal patterns and possible dynamics under future climate scenarios may have significant implications for management policies and practices against this destructive agriculture pest.

View Article and Find Full Text PDF

The transition from water to land of amphibians is evolutionarily significant in the history of vertebrates, and immunological adaptation is an important challenge for amphibians to respond to the dramatic changes of the environmental pathogens during their origin and diversification. Toll-like receptors (TLRs) are important pattern recognition receptors for the innate immune response and TLRs signaling pathway play essential roles in the immune responses to pathogens and inflammatory reaction. However, the evolutionary patterns and molecular mechanisms underlying their adaptation in amphibians are poorly documented to date.

View Article and Find Full Text PDF

CRISPR-Cas system, a natural acquired immune system in prokaryotes that defends against exogenous DNA invasion because of its simple structure and easy operation, has been widely used in many research fields such as synthetic biology, crop genetics and breeding, precision medicine, and so on. The miniature CRISPR-Cas12 system has been an emerging genome editing tool in recent years. Compared to the commonly used CRISPR-Cas9 and CRISPR-Cas12a, the miniature CRISPR-Cas12 system has unique advantages, such as rich PAM sites, higher specificity, smaller volume, and cytotoxicity.

View Article and Find Full Text PDF

Stereoselective Total Synthesis of Natural Decanolides Bellidisin C and Pinolidoxin.

Molecules

November 2024

State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

A divergent total synthesis of bioactive, naturally occurring decanolides, pinolidoxin and bellidisin C, was accomplished by taking advantage of chiral templates -ribose and -malic acid. In particular, bellidisin C, which is the first total synthesis so far, was achieved through a cascade reaction of reductive elimination and nucleophilic addition in a one-pot process and a sodium-alkoxide-promoted intramolecular lactonization as the key steps.

View Article and Find Full Text PDF

Single-cell multi-omics refers to the various types of biological data at the single-cell level. These data have enabled insight and resolution to cellular phenotypes, biological processes, and developmental stages. Current advances hold high potential for breakthroughs by integrating multiple different omics layers.

View Article and Find Full Text PDF

Palladium-Catalyzed Fluorinated Olefination of Aromatics.

Org Lett

December 2024

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.

Palladium-mediated, ligand-promoted C-H fluorinated olefination of aromatic derivatives is reported employing 2-bromo-3,3,3-trifluoropropene (BTP) as the fluorinating reagent. Bioactive compounds, such as Isatin, exhibited excellent compatibility with this reaction, underscoring the significance of this methodology for the synthesis of important derivatives.

View Article and Find Full Text PDF

Pd-Catalyzed [2 + 2 + 2] Cyclization of Alkyne-cyclohexadienones and -Akynyl Benzenesulfonamides for Construction of Fused Tricyclic Hydronaphthofurans.

J Org Chem

January 2025

State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China.

A palladium-catalyzed [2 + 2 + 2] cyclization of 1,6-enynes with unsymmetrical alkynes has been successfully accomplished, resulting in the formation of a series of fused tricyclic hydronaphthofurans with high stereo- and regioselectivity in a single step. This reaction demonstrates 100% atomic economy and exhibits a broad substrate scope.

View Article and Find Full Text PDF

Mimic metalloenzymes with atomically dispersed Fe sites in covalent organic framework membranes for enhanced CO photoreduction.

Chem Sci

January 2025

Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China

The massive CO emissions from continuous increases in fossil fuel consumption have caused disastrous environmental and ecological crises. Covalent organic frameworks (COFs) hold the potential to convert CO and water into value-added chemicals and O to mitigate this crisis. However, their activity and selectivity are very low under conditions close to natural photosynthesis.

View Article and Find Full Text PDF