15,670 results match your criteria: "Henan Normal University; wq11ab@163.com.[Affiliation]"

Enhanced Hot/Free Electron Effect for Photocatalytic Hydrogen Evolution Based on 3D/2D Graphene/MXene Composite.

Small

March 2025

The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.

Photocatalytic hydrogen production through water splitting represents a promising strategy to store solar energy as chemical energy. Current photocatalysts primarily focus on traditional semiconductor materials, such as metal oxides, sulfides, nitrides, g-CN, etc. However, these materials often suffer from large bandgap and fast charge recombination, which limit sunlight utilization and result in unsatisfactory photon conversion efficiency.

View Article and Find Full Text PDF

Integrative analysis of gene expression and chromatin dynamics multi-omics data in mouse models of bleomycin-induced lung fibrosis.

Epigenetics Chromatin

March 2025

State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, Henan, 453007, China.

Background: Pulmonary fibrosis is a relentless and ultimately fatal lung disorder. Despite a wealth of research, the intricate molecular pathways that contribute to the onset of PF, especially the aspects related to epigenetic modifications and chromatin dynamics, continue to be elusive and not fully understood.

Methods: Utilizing a bleomycin-induced pulmonary fibrosis model, we conducted a comprehensive analysis of the interplay between chromatin structure, chromatin accessibility, gene expression patterns, and cellular heterogeneity.

View Article and Find Full Text PDF

Background: Increasing attention has been paid to the effect of overprotective parenting style, which is prevalent in China, on academic anxiety among high school students. The present study aims to clarify the intrinsic dynamic mechanism and explore gender heterogeneity in this relationship. We also analyze the mediating roles of self-concept and positive coping style, and identify intervention programs for academic anxiety and psychological disorders from these dynamic connections.

View Article and Find Full Text PDF

Dairy goats, a livestock species with a long history of milk production, are essential for the economic advancement of nations, particularly in regions experiencing growth. In this study, we gathered whole-genome resequencing data of 58 goats, including 34 dairy goats and 24 wild goats (Bezoar), to explore the selection signatures linked to milk production traits using ROH (Runs of homozygosity), CLR (composite likelihood ratio), Fst (Fixation index), XP-EHH (Ex-tended haplotype homozygosity across populations) and XP-CLR(Cross-population composite likelihood ratio test) methods. Analysis of five tests of selection signatures for dairy goats revealed a total of 210 genes, with 24 genes consistently identified in at least two approaches.

View Article and Find Full Text PDF

Seed longevity is the period over which seeds remain viable and capable of gemination, and is an important trait of seed quality. Longevity changes in seed directly affect the germination rate, seedling morphology, and storage time. Therefore, the identification of seed longevity genes has significant value for cultivating seeds that are storage-resistant and have long lifespan.

View Article and Find Full Text PDF

Microplastics and antibiotic resistance genes are two new pollutants in water environments, and they have potential risks to human health and ecological safety. On the basis of the accumulation of pollutants and microorganisms in sediment, macrobenthic invertebrates are considered as potential practitioners of microplastic degradation and antibiotic resistance gene (ARG) transfer. However, whether microplastic degradation can affect ARG transfer in aquatic environments, especially in the gut of macrobenthic invertebrates, remains unclear.

View Article and Find Full Text PDF

Low salt protein-based emulsion: Health and quality win-win challenge.

Int J Biol Macromol

March 2025

College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China. Electronic address:

Due to the natural salt solubility of proteins as emulsifiers, a large amount of salt is required to fill the emulsion system to facilitate the completion and stability of the emulsion emulsification process. High salt diets and edible products have been rejected and gradually replaced by health products dominated by low salt concepts. However, low salt conditions can make it difficult for emulsion systems to form or collapse.

View Article and Find Full Text PDF

The design of nanomaterials enclosed by high-index facets plays a critical role in the surface-sensitive properties. Herein, hierarchical CuCoO microflowers (CCO-F) with highly exposed high-index (112) facets are rationally designed via a solvothermal method followed by calcination. CCO-F are composed of 30 nm-thick nanoflakes and have an ultrahigh specific surface area of .

View Article and Find Full Text PDF

Design strategies for chiral iridium(III) complexes with stable circularly polarized luminescent properties have emerged as important research topics in the field of organic photonics. Given the high rigidity, low chemical activity and multi-closed-loop structure of -camphor, its chirality cannot be easily affected. Furthermore, the introduction of indolo[3,2,1-]carbazole is beneficial for the narrow emission spectrum.

View Article and Find Full Text PDF

Despite the significant potential of photocatalysis as a robust synthetic tool, the high reactivity of radicals often presents challenges in achieving optimal chemoselectivity. In this study, we demonstrate that this inherent limitation can be strategically harnessed for asymmetric photoredox catalysis. By utilizing a chiral catalyst to facilitate kinetic resolution between the two enantiomers of racemic radical intermediates, one enantiomer selectively undergoes the desired transformation, while noncatalytic side reactions deplete the other enantiomer.

View Article and Find Full Text PDF

Unraveling Compressive Strain and Oxygen Vacancy Effect of Iridium Oxide for Proton-Exchange Membrane Water Electrolyzers.

Adv Mater

March 2025

Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China.

Iridium-based electrocatalysts are commonly regarded as the sole stable operating acidic oxygen evolution reaction (OER) catalysts in proton-exchange membrane water electrolysis (PEMWE), but the linear scaling relationship (LSR) of multiple reaction intermediates binding inhibits the enhancement of its activity. Herein, the compressive strain and oxygen vacancy effect exists in iridium dioxide (IrO)-based catalyst by a doping engineering strategy for efficient acidic OER activity. In situ synchrotron characterizations elucidate that compressive strain can enhance Ir─O covalency and reduce the Ir─Ir bond distance, and oxygen vacancy (O) as an electronic regulator causes rapid adsorption of water molecules on the Ir and adjacent Ov (Ir─O) pair site to be coupled directly into O─O intermediates.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSC) ranks among the most prevalent cancers worldwide, characterized by significant heterogeneity and a complex immune microenvironment. T cell exhaustion is pivotal in the pathogenesis of HNSC, where depleted T cells exhibit reduced proliferative capacity and diminished effector function, facilitating tumor immune escape and subsequent disease progression. A thorough understanding of the primary mechanisms driving T cell depletion within the tumor microenvironment is essential for enhancing the efficacy of immunotherapeutic approaches in HNSC, with profound implications for patient outcomes.

View Article and Find Full Text PDF

Facet-Selective Growth of Dots-on-Plate II-VI Heterostructures for Efficient Photocatalytic Hydrogen Evolution.

Nano Lett

March 2025

Engineering Technical Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, P. R. China.

High-level control over the surface and interface of II-VI heterostructures is crucial for enhancing charge separation and optimizing active sites, thus improving photocatalytic performance. However, due to variations in surface energy and atomic arrangement among different crystal facets, achieving selective growth of specific facets remains a significant challenge. Herein, we have achieved the selective growth of CdSe or ZnSe dots on the lateral facets or basal facets of two-dimensional CdS or ZnS nanoplates by carefully selecting Se source precursors with different reaction activities.

View Article and Find Full Text PDF

Junction Field-Effect Transistors Based on MoSe/WSe Heterostructures for High-Performance Photodetection.

ACS Appl Mater Interfaces

March 2025

School of Electronic Science and Engineering (School of Microelectronics), South China Normal University, Foshan 528225, P. R. China.

Two-dimensional (2D) materials show great potential in creating high-performance ultracompact photodetectors. Existing 2D photodetectors are usually designed based on a photogating effect or photovoltaic effect. However, achieving a balance between photodetectivity and photoresponsivity presents a significant challenge due to increased dark currents at trap level recombination or the lack of a gain mechanism.

View Article and Find Full Text PDF

This study investigates the mechanisms of CO adsorption and separation in COF (covalent organic framework) membranes modified with ionic liquids and DESs (deep eutectic solvents) under varying temperature and humidity conditions by molecular dynamics simulations. The results indicate that higher temperatures enhance the CO permeability, while an appropriate amount of water improves separation selectivity. The effects of DES and PEGIL (PEG-modified ionic liquid) solvents differ due to their distinct molecular structures.

View Article and Find Full Text PDF

In recent years, growth in technology has significantly impacted various industries, including sports, health, e-commerce, and agriculture. Among these industries, the sports sector is experiencing significant transformation, which needs support in accurately monitoring athlete predicting and performance injuries arising due to traditional methods' limitations. Keeping the above in mind, in this article, we present the Intelligent Sports Management System (ISMS) with the integration of wireless sensor networks (WSNs) and neural networks (NNs), which enhance athlete monitoring and injury prediction.

View Article and Find Full Text PDF

Two new species of the purse-web spider genus Latreille, 1804, collected from China, are diagnosed and described based on the genital morphology of both sexes: (♂♀) and (♂♀). These species are widespread in central China. is found in Anhui, Hunan, and Jiangxi provinces, while is distributed across Anhui, Guangxi, Guizhou, Henan, Hubei, Hunan, and Jiangxi provinces.

View Article and Find Full Text PDF

Dehalogenative deuteration of organic halides is an efficient and straightforward method for incorporating deuterium atoms at specific locations within target molecules. However, utilizing organic halides in photoredox chemistry, particularly unactivated alkyl halides, presents challenges due to their low reduction potentials. In this work, we present a general and effective photoinduced dehalogenative deuteration method for a diverse array of alkyl halides, employing DO as an economical source of deuterium.

View Article and Find Full Text PDF

We report a cost-effective approach for the enantioselective hydrophosphinylation of ethynylazaarenes utilizing a chiral copper catalytic platform. This strategy efficiently converts racemic secondary phosphine oxides (SPOs) into -chiral tertiary phosphine oxides (TPOs) bearing functionalized olefin substituents with azaarene moieties, achieving high yields and exceptional enantioselectivities. These adducts serve as crucial intermediates in the development of valuable chiral 1,5-hybrid ,-ligands.

View Article and Find Full Text PDF

This study explores two structurally related π-skeletons. The π-skeleton of compounds 1a-e containing three heptagons represents a key fragment in theoretical carbon schwarzites, while that of 2a-b is a triple [6]helicene. Compounds 1a-e were synthesized via Scholl reactions, and using a weaker acid allowed the reaction to stop at an intermediate stage, yielding 2a-b.

View Article and Find Full Text PDF

Ultrahigh antipsychotics selective accumulation and efficient photocatalytic degradation using a novel 2D BiOIO-based molecularly imprinted photocatalyst.

Environ Res

March 2025

School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China.

Adsorption-assisted photocatalytic degradation of pollutants is an effective method to improve degradation efficiency. However, most adsorptive photocatalysts are not selective and cannot efficiently remove low-concentration targets in complex systems, which limit their practical application. Therefore, a novel molecularly imprinted photocatalyst (MI-BiOIO) with high selectivity and adsorption capacity was prepared using two-dimensional BiOIO nanosheet as the matrix.

View Article and Find Full Text PDF

It is impossible to overlook the effects of microplastics (MPs) on aquatic organisms as they continuously accumulate in water environment. Freshwater planarians, which exist in the benthic zone of water bodies and come into contact with the deposited MPs particles, provide a highly representative model for studying the effects of MPs on aquatic organisms. Anthocyanins (ANTs) have gained significant popularity in recent years for their diverse health benefits.

View Article and Find Full Text PDF

This study examines the relationship between Big Five personality traits and aggression in physical education students, with particular attention to gender differences in aggressive behaviors. A cross-sectional study was conducted using a convenience sampling method to recruit physical education undergraduates aged 18-24. an online questionnaire was distributed via WeChat groups, yielding 410 valid responses (94% effective response rate) from students in Henan, China (245 males, 165 females).

View Article and Find Full Text PDF

Quality control of mitochondrial nucleoids.

Trends Cell Biol

March 2025

Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China; State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China; The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, 510645, China. Electronic address:

Mitochondrial nucleoids, organized complexes that house and protect mitochondrial DNA (mtDNA), are normally confined within the mitochondrial double-membrane system. Under cellular stress conditions, particularly oxidative and inflammatory stress, these nucleoids can undergo structural alterations that lead to their aberrant release into the cytoplasm. This mislocalization of nucleoid components, especially mtDNA, can trigger inflammatory responses and cell death pathways, highlighting the critical importance of nucleoid quality control mechanisms.

View Article and Find Full Text PDF

Electrochemical oscillation during copper recovery from waste printed circuit boards by slurry electrolysis: Generation mechanism and process characteristics.

J Environ Manage

March 2025

Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China. Electronic address:

Slurry electrolysis can be used to recover copper from waste printed circuit boards (WPCBs), but electrochemical oscillations during recovery increase the power consumption. Therefore, copper(II) chloride was selected as a simulated electrolyte to study electrochemical oscillations during the recovery of copper from WPCBs by slurry electrolysis. The results showed that a cuprous chloride passivation film formed on the cathode and induced decaying, bottom-up electrochemical oscillations whose amplitude and frequency were affected by several factors.

View Article and Find Full Text PDF