225 results match your criteria: "Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy[Affiliation]"
ACS Polym Au
December 2024
Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Cauerstraße 1, 91058 Erlangen, Germany.
Polyethersulfone (PSU) as a commercially available polymer offers many different opportunities for functionalization for diverse fields of application, for example, electrophilic substitutions like sulfonation and bromination or nucleophilic reactions such as lithiation. This study presents three different polysulfone derivatives, first functionalized by a lithiation reaction, followed by a reaction with carbonyl compounds containing pentafluorophenyl groups. In the last step, the pentafluorophenyl moieties of the modified PSU were sulfonated by thiolation and subsequent oxidation to sulfonic acid groups.
View Article and Find Full Text PDFChem Sci
November 2024
Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17 CH-1951 Sion Switzerland
The current generation of large language models (LLMs) has limited chemical knowledge. Recently, it has been shown that these LLMs can learn and predict chemical properties through fine-tuning. Using natural language to train machine learning models opens doors to a wider chemical audience, as field-specific featurization techniques can be omitted.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Inorganic Chemistry, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany.
Future carbon management strategies require storage in elemental form, achievable through a sequence of CO hydrogenation reactions. Hydrogen is recycled from molecular intermediates by dehydrogenation, and side product acetylene selectively hydrogenated to ethylene. Existing Pd alloy catalysts for gas purification underperform in concentrated feeds, necessitating novel concepts.
View Article and Find Full Text PDFAdv Mater
December 2024
Physics of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748, Garching, Germany.
Designing electrocatalysts with optimal activity and selectivity relies on a thorough understanding of the surface structure under reaction conditions. In this study, experimental and computational approaches are combined to elucidate reconstruction processes on low-index Pd surfaces during H-insertion following proton electroreduction. While electrochemical scanning tunneling microscopy clearly reveals pronounced surface roughening and morphological changes on Pd(111), Pd(110), and Pd(100) surfaces during cyclic voltammetry, a complementary analysis using inductively coupled plasma mass spectrometry excludes Pd dissolution as the primary cause of the observed restructuring.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Cauerstr. 1, 91058 Erlangen, Germany.
This study examines the effect of various quaternary ammonium groups on AEMWE performance and hydrogen crossover in blends of quaternized polystyrenes with O-PBI. Due to their higher hydroxide conductivity (69 mS cm at 80 °C, 90% RH), trimethylammonium groups enable AEMWE to reach 1.0 A cm at 2.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK.
Metal-organic framework nanosheets (MONs) have proved themselves to be useful additives for enhancing the performance of a variety of thin film solar cell devices. However, to date only isolated examples have been reported. In this work we take advantage of the modular structure of MONs in order to resolve the effect of their different structural and optoelectronic features on the performance of organic photovoltaic (OPV) devices.
View Article and Find Full Text PDFACS Appl Nano Mater
November 2024
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik (CRT), 91058 Erlangen, Germany.
Small Methods
November 2024
Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany.
J Am Chem Soc
November 2024
Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany.
Reducing the iridium demand in Proton Exchange Membrane Water Electrolyzers (PEM WE) is a critical priority for the green hydrogen industry. This study reports the discovery of a TiO-supported Ir@IrO(OH) core-shell nanoparticle catalyst with reduced Ir content, which exhibits superior catalytic performance for the electrochemical oxygen evolution reaction (OER) compared to a commercial reference. The TiO-supported Ir@IrO(OH) core-shell nanoparticle configuration significantly enhances the OER Ir mass activity from 8 to approximately 150 A g at 1.
View Article and Find Full Text PDFACS Mater Lett
November 2024
Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich, Cauerstrasse 1, 91058 Erlangen, Germany.
With the growing interest of the electrochemical community in high-throughput (HT) experimentation as a powerful tool in accelerating materials discovery, the implementation of HT methodologies and the design of HT workflows has gained traction. We identify 6 aspects essential to HT workflow design in electrochemistry and beyond to ease the incorporation of HT methods in the community's research and to assist in their improvement. We study IrCo mixed-metal oxides (MMOs) for the oxygen evolution reaction (OER) in acidic media using the mentioned aspects to provide a practical example of possible workflow design pitfalls and strategies to counteract them.
View Article and Find Full Text PDFMater Horiz
November 2024
Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HIERN), Forschungszentrum Jülich, Fürther Straße 248, 90429 Nürnberg, Germany.
Perovskite solar cells (PSC) are promising potential competitors to established photovoltaic technologies due to their superior efficiency and low-cost solution processability. However, the limited understanding of the crystallization behaviour hinders the technological transition from lab-scale cells to modules. In this work, advanced phase field (PF) simulations of solution-based film formation are used for the first time to obtain mechanistic and morphological information that is experimentally challenging to access.
View Article and Find Full Text PDFPrecis Chem
December 2023
Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058 Erlangen, Germany.
Liquid-phase transmission electron microscopy (LP-TEM) is a powerful tool to gain unique insights into dynamics at the nanoscale. The electron probe, however, can induce significant beam effects that often alter observed phenomena such as radiolysis of the aqueous phase. The magnitude of beam-induced radiolysis can be assessed by means of radiation chemistry simulations potentially enabling quantitative application of LP-TEM.
View Article and Find Full Text PDFACS Meas Sci Au
October 2024
Forschungzentrum Jülich GmbH, Helmholtz Institute for Renewable Energy (IET-2), Cauerstraße 1, Erlangen 91058, Germany.
The scanning gas diffusion electrode (S-GDE) half-cell is introduced as a new tool to improve the evaluation of electrodes used in electrochemical energy conversion technologies. It allows both fast screening and fundamental studies of real catalyst layers by applying coupled mass spectrometry techniques such as inductively coupled plasma mass spectrometry and online gas mass spectrometry. Hence, the proposed setup overcomes the limitations of aqueous model systems and full cell-level studies, bridging the gap between the two approaches.
View Article and Find Full Text PDFChemistry
December 2024
Angewandte Physikalische Chemie, Freie Universität Berlin (FU Berlin), Arnimallee 22, Berlin, 14195, Germany.
We investigated the dehydrogenation reaction and the thermal robustness of the liquid organic hydrogen carrier (LOHC) couple benzaldehyde/cyclohexylmethanol on a Pt(111) model catalyst in situ in synchrotron radiation photoelectron spectroscopy- and complementary temperature-programmed desorption experiments. The system stores hydrogen in a cyclohexyl group and a primary alcohol functionality and achieves an attractive hydrogen storage capacity of 7.0 mass %.
View Article and Find Full Text PDFChempluschem
December 2024
Friedrich-Alexander University Erlangen-Nürnberg, Interdisciplinary Center for Functional Particle Systems, Haberstraße 9a, 91058, Erlangen, Germany.
Phys Rev E
August 2024
Simulation of Physical Systems Group, Department of Physics, Universidad Nacional de Colombia, Crr 30 No. 45-03, Ed. 404, Of. 348, Bogotá D.C., Colombia.
We employ a lattice Boltzmann method to compute the acoustic radiation force produced by standing waves on a compressible object for the density matched case. Instead of simulating the fluid mechanics equations directly, the proposed method uses a lattice Boltzmann model that reproduces the wave equation, together with a kernel interpolation scheme, to compute the first-order perturbations of the pressure and velocity fields on the object's surface and, from them, the acoustic radiation force. The procedure reproduces with excellent accuracy the theoretical expressions by Gor'kov and Wei for the sphere as the 3D case and an infinitely long cylinder as the 2D case, respectively, even with a modest number of lattice Boltzmann cells.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), 91058 Erlangen, Germany.
The enhanced utilization of noble metal catalysts through highly porous nanostructures is crucial to advancing the commercialization prospects of proton exchange membrane water electrolysis (PEMWE). In this study, hierarchically structured IrO-based nanofiber catalyst materials for acidic water electrolysis are synthesized by electrospinning, a process known for its scalability and ease of operation. A calcination study at various temperatures from 400 to 800 °C is employed to find the best candidates for both electrocatalytic activity and stability.
View Article and Find Full Text PDFEnergy Environ Sci
August 2024
Univ. Grenoble Alpes, Univ. Savoie-Mont-Blanc, CNRS, Grenoble-INP, LEPMI 38000 Grenoble France
Atomic Fe in N-doped C (Fe-N-C) catalysts provide the most promising non-precious metal O reduction activity at the cathodes of proton exchange membrane fuel cells. However, one of the biggest remaining challenges to address towards their implementation in fuel cells is their limited durability. Fe demetallation has been suggested as the primary initial degradation mechanism.
View Article and Find Full Text PDFChemistry
December 2024
Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany.
Electrochemical transformations are considered a green alternative to classical redox chemistry as it eliminates the necessity for toxic and waste producing redox reagents. Typical electrochemical reactions require the addition of a supporting electrolyte - an ionic compound to facilitate reaction medium conductivity. However, this is often accompanied by an increase in the amount of produced waste.
View Article and Find Full Text PDFChem Commun (Camb)
August 2024
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
Automated platforms assessing the stability of electrocatalysts are key to accelerate the deployment of clean energy technologies. Here, we present a robust system that allows the study of corrosion behavior in conjunction with the electrochemical protocol and electrolyte composition over many individual electrodes. Oxygen reduction reaction on Pt is used as a proof-of-concept platform, where the influence of the potential window and phosphoric acid (PA) addition on Pt dissolution is probed.
View Article and Find Full Text PDFChem Rev
August 2024
Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada.
Chemistry
October 2024
Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany.
In this work, a novel type of fluorine-lean proton exchange membranes is presented, using sulfonamide-sulfonimide functional groups for ion conduction. These groups are constructed on a polystyrene backbone for simple and cost-efficient usage as well as rapid scalability. The polymer is further tailored by adjusting the sulfonamide functionality with various end-groups, namely pentafluorophenyl, 4-fluorophenyl, butyl and octyl groups.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2024
Department of Chemistry, University of Central Florida (UCF), Orlando 32816, Florida, United States.
Low-loading Pd supported on FeO nanoparticles was synthesized. A common nanocatalyst system with previously reported synergistic enhancement of reactivity that is attributed to the electronic interactions between Pd and the FeO support. FeO-selective precoalescence overcoating with ZnO atomic layer deposition (ALD), using Zn(CHCH) and HO as precursors, dampens competitive hydrogenation reactivity at FeO-based sites.
View Article and Find Full Text PDFJ Hazard Mater
September 2024
Institute of Water Chemistry, Dresden University of Technology, 01069 Dresden, Germany. Electronic address:
Adv Sci (Weinh)
August 2024
Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, 91058, Erlangen, Germany.
The widespread application of green hydrogen production technologies requires cost reduction of crucial elements. To achieve this, a viable pathway to reduce the iridium loading in proton exchange membrane water electrolysis (PEMWE) is explored. Herein, a scalable synthesis method based on a photodeposition process for a TiO@IrO core-shell catalyst with a reduced iridium content as low as 40 wt.
View Article and Find Full Text PDF