2,875 results match your criteria: "Helmholtz-Centre for Environmental Research (UFZ)[Affiliation]"

Protein-based stable isotope probing (protein-SIP) can link microbial taxa to substrate assimilation. Traditionally, protein-SIP requires a sample-specific metagenome-derived database for samples with unknown composition. Here, we describe GroEL-prototyping-based stable isotope probing (GroEL-SIP), that uses GroEL as a taxonomic marker protein to identify bacterial taxa (GroEL-proteotyping) coupled to SIP directly linking identified taxa to substrate consumption.

View Article and Find Full Text PDF

Long-term variability of extreme precipitation with WRF model at a complex terrain River Basin.

Sci Rep

January 2025

Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350117, China.

Global warming has profound effects on precipitation patterns, leading to more frequent and extreme precipitation events over the world. These changes pose significant challenges to the sustainable development of socio-economic and ecological environments. This study evaluated the performance of the new generation of the mesoscale Weather Research and Forecasting (WRF) model in simulating long-term extreme precipitation events over the Minjiang River Basin (MRB) of China from 1981 to 2020.

View Article and Find Full Text PDF

Occurrence and potential risk of steroid hormones in selected surface water and wastewater treatment plants in western Kenya.

Environ Pollut

December 2024

Department of Exposure Science, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig Germany; Department Evolutionary Ecology & Environmental Toxicology, Institute of Ecology, Evolution and Diversity-Goethe University, Max-von-Laue-Straße 13, Frankfurt am Main, Germany. Electronic address:

Steroid hormones are significant contributors to endocrine disruption, affecting the hormonal functions of both humans and aquatic organisms. However, data on their occurrence and risks in fresh water systems particularly in low- and middle-income countries, is scarce. In this regard, a comprehensive investigation of 58 steroid hormones in rivers and wastewater treatment plants (WWTPs) was conducted in western Kenya.

View Article and Find Full Text PDF

Dissolved organic matter (DOM) present in surface aquatic systems is a heterogeneous mixture of organic compounds reflecting its allochthonous and autochthonous organic matter (OM) sources. The composition of DOM is determined by environmental factors like land use, water chemistry, and climate, which influence its release, movement, and turnover in the ecosystem. However, studying the impact of these environmental factors on DOM composition is challenging due to the dynamic nature of the system and the complex interactions of multiple environmental factors involved.

View Article and Find Full Text PDF

Future increase in compound soil drought-heat extremes exacerbated by vegetation greening.

Nat Commun

December 2024

Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.

Compound soil drought and heat extremes are expected to occur more frequently with global warming, causing wide-ranging socio-ecological repercussions. Vegetation modulates air temperature and soil moisture through biophysical processes, thereby influencing the occurrence of such extremes. Global vegetation cover is broadly expected to increase under climate change, but it remains unclear whether vegetation greening will alleviate or aggravate future increases in compound soil drought-heat events.

View Article and Find Full Text PDF

Intensification of future subsurface marine heatwaves in an eddy-resolving model.

Nat Commun

December 2024

Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Physical Oceanography, Ministry of Education, the College of Oceanic and Atmospheric Sciences, Ocean University of China, and Laoshan Laboratory, Qingdao, China.

A shift in depth range enables marine organisms to adapt to marine heatwaves (MHWs). Subsurface MHWs could limit this pathway, yet their response to climate warming remains unclear. Here, using an eddy-resolving Earth system model forced under a high emission scenario, we project a robust global increase in subsurface MHWs driven by rising subsurface mean temperatures and enhanced temperature variability.

View Article and Find Full Text PDF

Plant Species Richness and the Root Economics Space Drive Soil Fungal Communities.

Ecol Lett

January 2025

Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, Germany.

Trait-based approaches have been increasingly used to relate plants to soil microbial communities. Using the recently described root economics space as an approach to explain the structure of soil-borne fungal communities, our study in a grassland diversity experiment reveals distinct root trait strategies at the plant community level. In addition to significant effects of plant species richness, we show that the collaboration and conservation gradient are strong drivers of the composition of the different guilds of soil fungi.

View Article and Find Full Text PDF

Impact of physicochemical and microbial drivers on the formation of disinfection by-products in drinking water distribution systems: A multivariate Bayesian network modeling approach.

Water Res

December 2024

Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.

The formation of disinfection byproducts (DBPs) in drinking water distribution systems (DWDS) is significantly affected by numerous factors, including physicochemical water properties, microbial community composition and structure, and the characteristics of organic DBP precursors. However, the codependence of various factors remains unclear, particularly the contribution of microbial-derived organics to DBP formation, which has been inadequately explored. Herein, we present a Bayesian network modeling framework incorporating a Bayesian-based microbial source tracking method and excitation-emission fluorescence spectroscopy-parallel factor analysis to capture the critical drivers influencing DBP formation and explore their interactions.

View Article and Find Full Text PDF

Carbon, hydrogen, nitrogen and chlorine isotope fractionation during 3-chloroaniline transformation in aqueous environments by direct photolysis, TiO photocatalysis and hydrolysis.

Water Res

December 2024

School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15 04318 Leipzig, Germany; Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany. Electronic address:

This study investigates carbon, hydrogen, nitrogen and chlorine isotope fractionation during the transformation of 3-chloroaniline (3-CA) via direct photolysis, TiO photocatalytic degradation at neutral condition and hydrolysis at pH 3, pH 7 and pH 11. Direct photolysis and ∙OH reaction (UV/HO) showed similar inverse isotope fractionation (ε) for carbon (1.9 ± 0.

View Article and Find Full Text PDF

Indoor dust contains various endocrine-disrupting contaminants, yet the effect drivers of observed glucocorticoid activity are completely unknown. This study conducted an effect-directed analysis using orthogonal fractionation to identify effect drivers of glucocorticoid activity in indoor dust. After the detection of bioactivity using a human cell line stably transfected with a reporter gene, the sample underwent parallel HPLC fractionations with octadecyl, pentafluorophenyl, and aminopropyl columns to obtain orthogonal fractions.

View Article and Find Full Text PDF

Due to accelerating climate change and the need for new development to accommodate population growth, adaptation of urban drainage systems has become a pressing issue in cities. Questions arise whether decentralised urban drainage systems are a better alternative to centralised systems, and whether Nature Based Solutions' (NBS) multifunctionality also brings economic benefits. This research aims to develop spatio-economic scenarios to support cities in increasing their resilience to urban flooding with NBS.

View Article and Find Full Text PDF

Novel flame retardants (NFRs) in e-waste: Environmental burdens, health implications, and recommendations for safety assessment and sustainable management.

Toxicology

December 2024

Helmholtz Centre for Environmental Research - UFZ, Department Ecotoxicology, Leipzig, Germany; Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium.

Novel flame retardants (NFRs) have emerged as chemicals of environmental health concern due to their widespread use as an alternative to polybrominated diphenyl ethers (PBDE) in electrical and electronic devices. Humans and ecosystems are under threat because of e-waste recycling procedures that may emit NFRs and other anthropogenic chemicals into the e-waste workplace and the surrounding environment. The individual toxicity of NFRs including novel brominated flame retardants (NBFRs), their combined effects and the underlying mechanisms of toxicity have remained poorly understood.

View Article and Find Full Text PDF

Wastewater ozonation is commonly employed to enhance the subsequent biodegradation of effluent organic matter (EfOM) and contaminants of concern. However, there is evidence suggesting the formation of recalcitrant ozonation products (OPs) from EfOM. To investigate the biodegradability of OPs we conducted batch biodegradation experiments using wastewater effluent ozonated with mass-labeled (O) ozone.

View Article and Find Full Text PDF

Unravelling a Latent Pathobiome Across Coral Reef Biotopes.

Environ Microbiol

December 2024

Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.

Previous studies on disease in coral reef organisms have neglected the natural distribution of potential pathogens and the genetic factors that underlie disease incidence. This study explores the intricate associations between hosts, microbial communities, putative pathogens, antibiotic resistance genes (ARGs) and virulence factors (VFs) across diverse coral reef biotopes. We observed a substantial compositional overlap of putative bacterial pathogens, VFs and ARGs across biotopes, consistent with the 'everything is everywhere, but the environment selects' hypothesis.

View Article and Find Full Text PDF

Bioactivity Profiling of Chemical Mixtures for Hazard Characterization.

Environ Sci Technol

December 2024

Centre for Environmental Research and Justice (CERJ), School of Biosciences, The University of Birmingham, Birmingham B15 2TT, U.K.

The assessment and regulation of chemical toxicity to protect human health and the environment are done one chemical at a time and seldom at environmentally relevant concentrations. However, chemicals are found in the environment as mixtures, and their toxicity is largely unknown. Understanding the hazard posed by chemicals within the mixture is critical to enforce protective measures.

View Article and Find Full Text PDF

Draft genomes of two phenanthrene-degrading bacterial isolates from oil sands process-affected water (OSPW) in Alberta, Canada were sequenced. Both isolates grew in close association on agar plates and were difficult to obtain axenically. They represent novel and sp.

View Article and Find Full Text PDF

We present a versatile flow-through tube passive sampling device (TPS), with a controllable feedwater volumetric flow, that can be calibrated against the feedwater load of organic micropollutants (OMPs). This semipassive approach has the advantage of a determinable water load feeding the sampling device. The design of the TPS allows for new sampling scenarios in closed piping while providing stable and controlled sampling conditions.

View Article and Find Full Text PDF

Acanthocephalans as pollutant sinks? Higher pollutant accumulation in parasites may relieve their crustacean host.

Sci Total Environ

December 2024

Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.

Increasing chemical pollution calls for a closer look at ecologically highly relevant host-parasite interactions to understand the persistence of organisms and populations in a polluted environment. The impact of chemical exposure within the host-parasite interactions - particularly the distinctive bioaccumulation behavior of organic micropollutants - can substantially influence the persistence of a species. This significance has been emphasized by previous research showing a higher tolerance of Gammarus roeselii (Amphipoda, Crustacea) infected with acanthocephalans during acute exposure to a pyrethroid.

View Article and Find Full Text PDF

Hydrogenases are key enzymes forming or consuming hydrogen. The inactivation of these transition metal biocatalysts with oxygen limits their biotechnological applications. Oxygen-sensitive hydrogenases are distinguished from oxygen-insensitive (tolerant) ones by their initial hydrogen turnover rates influenced by oxygen.

View Article and Find Full Text PDF

At the global level, stream ecosystems are influenced by multiple anthropogenic stressors such as eutrophication, habitat deterioration, and water scarcity. Multiple stressor effects on stream biodiversity are well documented, but multiple stressor effects on stream ecosystem processes have received only limited attention. We conducted one mesocosm (stream channel) and one microcosm (feeding trial) experiment to study how combinations of reduced flow, increased nutrient concentrations, and increased fine sediment coverage would influence fungal and macroinvertebrate decomposer assemblages and their active contribution to leaf decomposition.

View Article and Find Full Text PDF

Quantification and occurrence of 39 tire-related chemicals in urban and rural aerosol from Saxony, Germany.

Environ Int

December 2024

Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany; University of Leipzig, Institute for Analytical Chemistry, Linnéstrasse 3, 04103 Leipzig, Germany. Electronic address:

Tire and road wear particles (TRWP) are a major contributor to non-exhaust traffic emissions, but their contribution to and dynamics in urban aerosol is not well known. Urban particulate matter (PM) in the size fraction below 10 µm (PM) from two German cities was collected over 2 weeks and analysed for 39 tire-related chemicals, including amines, guanidines, ureas, benzothiazoles, p-phenylenediamines, quinolines and several transformation products (TPs). Of these, 37 compounds were determined in PM at median concentrations of 212 pg/m for 1,3-diphenylguanidine (DPG) and 132 pg/m for benzothiazole-2-sulfonic acid (BTSA); 10 of the compounds have not been reported in urban aerosol before.

View Article and Find Full Text PDF

MDCK/Caco-2 assays serve as essential in vitro tools for evaluating membrane permeability and active transport, especially mediated by P-glycoprotein (P-gp). Despite their utility, challenges remain in quantifying active transport and using the efflux ratio (ER) to determine intrinsic values for active efflux. Such an intrinsic value for P-gp facilitated efflux necessitates knowing whether this transporter transports the neutral or ionic species of a compound.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores the construction of synthetic phototrophic microbial consortia for sustainable bioenergy, highlighting the challenges in regulation and efficiency.
  • It successfully engineered a community utilizing specific strains, allowing for the production of biohydrogen and fatty acids while fixing nitrogen and carbon dioxide.
  • Key findings indicate that circadian illumination and infrared light enhance H and fatty acid production by regulating metabolic activities and protein expression related to nitrogen fixation and photosynthesis.
View Article and Find Full Text PDF

Risk Analysis for Invasion of the Forest Pest Paropsisterna bimaculata Present in Tasmania to Areas of the World.

Neotrop Entomol

December 2024

Programa de Pós-Graduação Em Produção Vegetal, Univ Federal Dos Vales Jequitinhonha E Mucuri, Diamantina, MG, Brazil.

Article Synopsis
  • Paropsisterna bimaculata is a harmful pest for eucalyptus trees, leading to significant defoliation and even tree death in Tasmanian plantations, impacting wood production.
  • The study focused on creating an ecoclimatic index model using CLIMEX software to predict where this pest might spread globally, identifying high-risk areas for eucalyptus crops.
  • Results indicated that regions with temperate climates across Asia, Africa, Europe, Oceania, and America are especially vulnerable, with a notable risk present in Brazil's southern and southeastern areas, guiding prevention strategies.
View Article and Find Full Text PDF

Experiments comparing diploids with polyploids and in single grassland sites show that nitrogen and/or phosphorus availability influences plant growth and community composition dependent on genome size; specifically, plants with larger genomes grow faster under nutrient enrichments relative to those with smaller genomes. However, it is unknown if these effects are specific to particular site localities with speciifc plant assemblages, climates, and historical contingencies. To determine the generality of genome size-dependent growth responses to nitrogen and phosphorus fertilization, we combined genome size and species abundance data from 27 coordinated grassland nutrient addition experiments in the Nutrient Network that occur in the Northern Hemisphere across a range of climates and grassland communities.

View Article and Find Full Text PDF