13 results match your criteria: "Helmholtz Institute for Pharmaceutical Research (HIPS)[Affiliation]"
J Med Chem
January 2025
Helmholtz Institute for Pharmaceutical Research (HIPS)-Helmholtz Centre for Infection Research (HZI), Saar-land University, Campus E8.1, 66123Saarbrücken, Germany.
Antimicrobial resistance (AMR) and herbicide resistance pose threats to society, necessitating novel anti-infectives and herbicides exploiting untapped modes of action like inhibition of IspD, the third enzyme in the MEP pathway. The MEP pathway is essential for a wide variety of human pathogens, including , , and as well as plants. Within the current perspective, we focused our attention on the third enzyme in this pathway, IspD, offering a comprehensive summary of the reported modes of inhibition and common trends, with the goal to inspire future research dedicated to this underexplored target.
View Article and Find Full Text PDFACS Infect Dis
December 2024
OmicScouts GmbH, Lise-Meitner-Straße 30, D-85354 Freising, Germany.
The limited understanding of the mechanism of action (MoA) of several antimalarials and the rise of drug resistance toward existing malaria therapies emphasizes the need for new strategies to uncover the molecular target of compounds in . Integral solvent-induced protein precipitation (iSPP) is a quantitative mass spectrometry-based (LC-MS/MS) proteomics technique. The iSPP leverages the change in solvent-induced denaturation of the drug-bound protein relative to its unbound state, allowing identification of the direct drug-protein target without the need to modify the drug.
View Article and Find Full Text PDFACS Infect Dis
December 2024
OmicScouts GmbH, Lise-Meitner-Straße 30, Freising D-85354, Germany.
Antimicrobial resistance (AMR) poses a serious threat to global health. The rapid emergence of resistance contrasts with the slow pace of antimicrobial development, emphasizing the urgent need for innovative drug discovery approaches. This study addresses a critical bottleneck in early drug development by introducing integral solvent-induced protein precipitation (iSPP) to rapidly assess the target-engagement of lead compounds in extracts of pathogenic microorganisms under close-to-physiological conditions.
View Article and Find Full Text PDFJ Med Chem
October 2024
Helmholtz Institute for Pharmaceutical Research (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany.
The methyl-d-erythritol phosphate (MEP) pathway has emerged as an interesting target in the fight against antimicrobial resistance. The pathway is essential in many human pathogens, including (), but is absent in human cells. In the present study, we report on the discovery of a new chemical class targeting IspD, the third enzyme in the pathway.
View Article and Find Full Text PDFCommun Biol
January 2024
Helmholtz Institute for Pharmaceutical Research (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, D-66123, Saarbrücken, Germany.
Commun Biol
November 2023
Helmholtz Institute for Pharmaceutical Research (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, D-66123, Saarbrücken, Germany.
The energy-coupling factor (ECF) transporters are a family of transmembrane proteins involved in the uptake of vitamins in a wide range of bacteria. Inhibition of the activity of these proteins could reduce the viability of pathogens that depend on vitamin uptake. The central role of vitamin transport in the metabolism of bacteria and absence from humans make the ECF transporters an attractive target for inhibition with selective chemical probes.
View Article and Find Full Text PDFInt J Mol Sci
February 2022
Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research (HIPS), Campus Building E 8.1, D-66123 Saarbrücken, Germany.
Herein, we report a novel whole-cell screening assay using as a model microorganism to identify inhibitors of energy-coupling factor (ECF) transporters. This promising and underexplored target may have important pharmacological potential through modulation of vitamin homeostasis in bacteria and, importantly, it is absent in humans. The assay represents an alternative, cost-effective and fast solution to demonstrate the direct involvement of these membrane transporters in a native biological environment rather than using a low-throughput in vitro assay employing reconstituted proteins in a membrane bilayer system.
View Article and Find Full Text PDFChemMedChem
March 2022
Helmholtz Institute for Pharmaceutical Research (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus E8.1, 66123, Saarbrücken, Germany.
The enzymes of the 2-C-methylerythritol-d-erythritol 4-phosphate (MEP) pathway (MEP pathway or non-mevalonate pathway) are responsible for the synthesis of universal precursors of the large and structurally diverse family of isoprenoids. This pathway is absent in humans, but present in many pathogenic organisms and plants, making it an attractive source of drug targets. Here, we present a high-throughput screening approach that led to the discovery of a novel fragment hit active against the third enzyme of the MEP pathway, PfIspD.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2021
Pharmacy Department, Drug Design Group, University of Groningen, Antonius Deusinglaan 1, 9700, AV Groningen, Netherlands. Electronic address:
In this report, we describe a truncated Deinococcus radiodurans 1-deoxy-D-xylulose-5-phosphate synthase (DXS) protein that retains enzymatic activity, while slowing protein degradation and showing improved crystallization properties. With modern drug-design approaches relying heavily on the elucidation of atomic interactions of potential new drugs with their targets, the need for co-crystal structures with the compounds of interest is high. DXS itself is a promising drug target, as it catalyzes the first reaction in the 2-C-methyl-D-erythritol 4-phosphate (MEP)-pathway for the biosynthesis of the universal precursors of terpenes, which are essential secondary metabolites.
View Article and Find Full Text PDFChemMedChem
August 2019
Department of Chemistry, University of Victoria, Victoria, BC, V8P 5C2, Canada.
Chromobox homolog 7 (Cbx7) is an epigenetic modulator that is an important driver of multiple cancers. It is a methyl reader protein that operates by recognizing and binding to methylated lysine residues on specific partners. Herein we report our efforts to create low-molecular-weight inhibitors of Cbx7 by making rational structural adaptations to inhibitors of a different methyl reader protein, L3MBTL1, inhibitors that had previously been reported to be inactive against Cbx7.
View Article and Find Full Text PDFJ Antimicrob Chemother
October 2018
Fraunhofer Institute for Toxicology and Experimental Medicine (Fraunhofer ITEM), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Member of the REBIRTH Cluster of Excellence, Nikolai-Fuchs-Straße 1, Hannover, Germany.
Objectives: In the context of cystic fibrosis, Pseudomonas aeruginosa biofilms often develop in the vicinity of airway mucus, which acts as a protective physical barrier to inhaled matter. However, mucus can also adsorb small drug molecules administered as aerosols, including antibiotics, thereby reducing their bioavailability. The efficacy of antibiotics is typically assessed by determining the MIC using in vitro assays.
View Article and Find Full Text PDFJ Med Chem
November 2018
Stratingh Institute for Chemistry , University of Groningen, Nijenborgh 7 , 9747 AG Groningen , The Netherlands.
Kinetic target-guided synthesis (KTGS) is a powerful strategy in which the biological target selects its own inhibitors by assembling them from biocompatible reagents via an irreversible process. In this approach, the biological target accelerates the reaction between complementary building blocks by bringing them in close proximity and proper orientation. KTGS has found application on various targets.
View Article and Find Full Text PDFSci Rep
September 2017
Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany.
In contrast to mild infections of Group A Streptococcus (GAS) invasive infections of GAS still pose a serious health hazard: GAS disseminates from sterile sites into the blood stream or deep tissues and causes sepsis or necrotizing fasciitis. In this case antibiotics do not provide an effective cure as the bacteria are capable to hide from them very quickly. Therefore, new remedies are urgently needed.
View Article and Find Full Text PDF