72 results match your criteria: "Heinrich Pette Institute for Experimental Virology[Affiliation]"

Recent Zika virus (ZIKV) infections have been associated with a range of neurological complications, in particular congenital microcephaly. Human neural progenitor cells (hNPCs) are thought to play an important role in the pathogenesis of microcephaly, and experimental ZIKV infection of hNPCs has been shown to induce cell death. However, the infection efficiency and rate of cell death have varied between studies, which might be related to intrinsic differences between African and Asian lineage ZIKV strains.

View Article and Find Full Text PDF

Mass cytometry (CyTOF), a mass spectrometry-based single cell phenotyping technology, allows utilization of over 35 antibodies in a single sample and is a promising tool for translational human immunology studies. Although several analysis tools are available to interpret the complex data sets generated, a robust method for standardization and quality control within and across studies is needed. Here we report an efficient and easily adaptable method to monitor quality of individual samples in human immunology studies and to facilitate reproducible data analysis.

View Article and Find Full Text PDF

Comprehensive next-generation sequencing (NGS) applications have recently identified various recurrent kinase and cytokine receptor rearrangements in Ph-like B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) amenable to tyrosin kinase inhibitor treatment. For rapid diagnostics of kinase pathway aberrations in minimal residual disease (MRD) high-risk BCP-ALL, we developed a PCR-independent NGS custom enrichment capture panel targeting recurrent genomic alterations, which allows for the identification of unknown 5' fusion partner genes and precise mapping of variable genomic breakpoints. Using a standardized bioinformatics algorithm, we identified kinase and cytokine receptor rearrangements in the majority of ALL patients with high burden of postinduction MRD and enrichment of IKZF1 mutation or deletion (IKZF1(del) ).

View Article and Find Full Text PDF

Selectins mediate small cell lung cancer systemic metastasis.

PLoS One

January 2015

Department of Anatomy and Experimental Morphology, University Medical Center Hamburg- Eppendorf, Hamburg, Germany; Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg- Eppendorf, Hamburg, Germany.

Metastasis formation is the major reason for the extremely poor prognosis in small cell lung cancer (SCLC) patients. The molecular interaction partners regulating metastasis formation in SCLC are largely unidentified, however, from other tumor entities it is known that tumor cells use the adhesion molecules of the leukocyte adhesion cascade to attach to the endothelium at the site of the future metastasis. Using the human OH-1 SCLC line as a model, we found that these cells expressed E- and P-selectin binding sites, which could be in part attributed to the selectin binding carbohydrate motif sialyl Lewis A.

View Article and Find Full Text PDF

The adenovirus type 5 nonstructural L4-100K protein is indispensable for efficient lytic infection. During the late phase, L4-100K promotes selective translation of viral late transcripts and mediates the trimerization of the major capsid protein hexon. In the present study, the role of a potential nuclear export signal in L4-100K was investigated.

View Article and Find Full Text PDF

While cloning and/or massive parallel sequencing of small RNAs represent powerful tools for the discovery of novel miRNAs, computational miRNA prediction represents a valuable alternative which can be performed with comparably little technical effort. This is especially true for viruses, as the number of predicted candidates generally remains low and thus within a range that may be readily confirmed by experimental means. Here, we provide a detailed protocol for the prediction of putative miRNA genes using VMir, an ab initio prediction program which we have recently designed specifically to identify pre-miRNAs in viral genomes.

View Article and Find Full Text PDF

Background: In analogy to normal stem cell differentiation, the current cancer stem cell (CSC) model presumes a hierarchical organization and an irreversible differentiation in tumor tissue. Accordingly, CSCs should comprise only a small subset of the tumor cells, which feeds tumor growth. However, some recent findings raised doubts on the general applicability of the CSC model and asked for its refinement.

View Article and Find Full Text PDF

The E1B-55K product from human adenovirus is a substrate of the small ubiquitin-related modifier (SUMO)-conjugation system. SUMOylation of E1B-55K is required to transform primary mammalian cells in cooperation with adenovirus E1A and to repress p53 tumour suppressor functions. The biochemical consequences of SUMO1 conjugation of 55K have so far remained elusive.

View Article and Find Full Text PDF

Herpesvirus latency is generally thought to be governed by epigenetic modifications, but the dynamics of viral chromatin at early timepoints of latent infection are poorly understood. Here, we report a comprehensive spatial and temporal analysis of DNA methylation and histone modifications during latent infection with Kaposi Sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi Sarcoma and primary effusion lymphoma (PEL). By use of high resolution tiling microarrays in conjunction with immunoprecipitation of methylated DNA (MeDIP) or modified histones (chromatin IP, ChIP), our study revealed highly distinct landscapes of epigenetic modifications associated with latent KSHV infection in several tumor-derived cell lines as well as de novo infected endothelial cells.

View Article and Find Full Text PDF

Dysfunction of pancreatic islet beta cells underlies both type 1 and type 2 diabetes and appears to result in part from the local release of proinflammatory cytokines. An improved understanding of the mechanisms that mediate islet responsiveness to proinflammatory cytokines may therefore expand our knowledge of the role of cytokine signaling in the development of diabetes, providing potential new targets for the development of therapeutics to protect pancreatic islets from inflammation. In this issue of the JCI, Maier and colleagues identify eukaryotic translation initiation factor 5A (eIF5A) as a critical regulator of the inflammatory response in mouse pancreatic islets.

View Article and Find Full Text PDF

The death-associated protein Daxx found in PML (promyelocytic leukemia protein) nuclear bodies (PML-NBs) is involved in transcriptional regulation and cellular intrinsic antiviral resistence against incoming viruses. We found that knockdown of Daxx in a nontransformed human hepatocyte cell line using RNA interference (RNAi) techniques results in significantly increased adenoviral (Ad) replication, including enhanced viral mRNA synthesis and viral protein expression. This Daxx restriction imposed upon adenovirus growth is counteracted by early protein E1B-55K (early region 1B 55-kDa protein), a multifunctional regulator of cell-cycle-independent Ad5 replication.

View Article and Find Full Text PDF

Analysis of the molecular mechanisms of viral-mediated oncogenesis has contributed enormously to the understanding of the basic principles of normal/malignant cell growth. Transformation by human adenoviruses is a multi-step process involving the modulation of numerous cellular pathways, leading to inhibition of apoptosis and growth arrest. However, the molecular mechanism of how the adenovirus oncogenes facilitate transformation of rodent cells, while concurrently failing to do so for human cells, remains elusive.

View Article and Find Full Text PDF

Background: Försters resonance energy transfer (FRET) microscopy is widely used for the analysis of protein interactions in intact cells. However, FRET microscopy is technically challenging and does not allow assessing interactions in large cell numbers. To overcome these limitations we developed a flow cytometry-based FRET assay and analysed interactions of human and simian immunodeficiency virus (HIV and SIV) Nef and Vpu proteins with cellular factors, as well as HIV Rev multimer-formation.

View Article and Find Full Text PDF

Background: The human immunodeficiency virus type 1 (HIV-1) Vpu protein degrades CD4 and counteracts a restriction factor termed tetherin (CD317; Bst-2) to enhance virion release. It has been suggested that both functions can be genetically separated by mutation of a serine residue at position 52. However, recent data suggest that the S52 phosphorylation site is also important for the ability of Vpu to counteract tetherin.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small, noncoding RNAs which posttranscriptionally regulate gene expression. The current release of the miRNA registry lists 16 viruses which encode a total of 146 miRNA hairpins. Strikingly, 139 of these are encoded by members of the herpesvirus family, suggesting an important role for miRNAs in the herpesvirus life cycle.

View Article and Find Full Text PDF

The hepatitis C virus non-structural NS5A protein impairs both the innate and adaptive hepatic immune response in vivo.

J Biol Chem

October 2009

Department of Internal Medicine II, University of Freiburg, D-79106 Freiburg, Germany; Institute of Infection Medicine, University of Kiel, D-24105 Kiel, Germany. Electronic address:

The role of hepatitis C virus (HCV) protein non-structural (NS) 5A in HCV-associated pathogenesis is still enigmatic. To investigate the in vivo role of NS5A for viral persistence and virus-associated pathogenesis a transgenic (Tg) mouse model was established. Mice with liver-targeted NS5A transgene expression were generated using the albumin promoter.

View Article and Find Full Text PDF

Rb2/p130 is the dominating pocket protein in the p53-p21 DNA damage response pathway leading to senescence.

Oncogene

October 2009

Department of Tumorvirology, Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg, Hamburg D-20251, Germany.

The different pocket proteins are established as negative cell cycle regulators. With regard to the repressor functions of pocket proteins in cellular senescence, studies so far have mainly focused on pRb/p105. Here, we show that in a broad range of wild-type p53-expressing human tumor cells, and in human diploid fibroblasts, Rb2/p130 is the dominating pocket protein in replicative and in accelerated senescence.

View Article and Find Full Text PDF

In this study, we characterize the molecular and functional features of a novel protein called SPOC1. SPOC1 RNA expression was previously reported to be highest in highly proliferating tissues and increased in a subset of ovarian carcinoma patients, which statistically correlated with poor prognosis and residual disease. These observations implied that SPOC1 might play a role in cellular proliferation and oncogenesis.

View Article and Find Full Text PDF

Abortive infection of BALB/c mouse embryo fibroblasts differing in p53 gene status (p53(+/+) versus p53(-/)(-)) with simian virus 40 (SV40) revealed a quantitatively and qualitatively decreased transformation efficiency in p53(-/-) cells compared to p53(+/+) cells, suggesting a supportive effect of wild-type (wt) p53 in the SV40 transformation process. SV40 transformation efficiency also was low in immortalized p53(-/-) BALB/c 10-1 cells but could be restored to approximately the level in immortalized p53(+/+) BALB/c 3T3 cells by reconstituting wt p53, but not mutant p53 (mutp53), expression. Stable expression of large T antigen (LT) in p53(+/+) 3T3 cells resulted in full transformation, while LT expression in p53(-/-) 10-1 cells could not promote growth in suspension or in soft agar to a significant extent.

View Article and Find Full Text PDF

The adenovirus type 5 (Ad5) early region 1B 55-kDa (E1B-55K) protein is a multifunctional regulator of cell-cycle-independent virus replication that participates in many processes required for maximal virus production. As part of a study of E1B-55K function, we generated the Ad5 mutant H5pm4133, carrying stop codons after the second and seventh codons of the E1B reading frame, thereby eliminating synthesis of the full-length 55K product and its smaller derivatives. Unexpectedly, phenotypic studies revealed that H5pm4133 fully exhibits the characteristics of wild-type (wt) Ad5 in all assays tested.

View Article and Find Full Text PDF

Nestin is the characteristic intermediate filament (IF) protein of rapidly proliferating progenitor cells and regenerating tissue. Nestin copolymerizes with class III IF-proteins, mostly vimentin, into heteromeric filaments. Its expression is downregulated with differentiation.

View Article and Find Full Text PDF

Dendritic cells (DC) are the most potent antigen-presenting cells (APC) of the immune system and are specialized to activate T as well as B cell-dependent immune responses. Mature DC are characterized by expression of CD83, a surface molecule that has been postulated to be required for efficient DC activity. Here we show that Leptomycin B (LMB), a highly specific inhibitor of the nuclear export receptor CRM1, abrogates the ability of DC to stimulate T cells in an allogeneic mixed lymphocyte reaction.

View Article and Find Full Text PDF

Peptide fragments, derived from prostatic acidic phosphatase, are secreted in large amounts into human semen and form amyloid fibrils. These fibrillar structures, termed semen-derived enhancer of virus infection (SEVI), capture HIV virions and direct them to target cells. Thus, SEVI appears to be an important infectivity factor of HIV during sexual transmission.

View Article and Find Full Text PDF

The adenovirus type 5 (Ad5) late region 4 (L4) 100-kDa nonstructural protein (L4-100K) mediates inhibition of cellular protein synthesis and selective translation of tripartite leader (TL)-containing viral late mRNAs via ribosome shunting. In addition, L4-100K has been implicated in the trimerization and nuclear localization of hexon protein. We previously proved that L4-100K is a substrate of the protein arginine methylation machinery, an emergent posttranslational modification system involved in a growing list of cellular processes, including transcriptional regulation, cell signaling, RNA processing, and DNA repair.

View Article and Find Full Text PDF