15 results match your criteria: "Heidelberg University Hospital and Heidelberg University[Affiliation]"

MYC dysregulation is pivotal in the onset and progression of IDH-mutant gliomas, mostly driven by copy-number alterations, regulatory element alterations, or epigenetic changes. Our pilot analysis uncovered instances of relative MYC overexpression without alterations in the proximal MYC network (PMN), prompting a deeper investigation into potential novel oncogenic mechanisms. Analysing comprehensive genomics profiles of 236 "IDH-mutant 1p/19q non-co-deleted" lower-grade gliomas from The Cancer Genome Atlas, we identified somatic genomic alterations within the PMN.

View Article and Find Full Text PDF

Mutations in isocitrate dehydrogenase 1 (IDH1) impart a neomorphic reaction that produces D-2-hydroxyglutarate (D2HG), which can inhibit DNA demethylases to drive tumorigenesis. Mutations affect residue R132 and display distinct catalytic profiles for D2HG production. We show that catalytic efficiency of D2HG production is greater in IDH1 R132Q than R132H mutants, and expression of R132Q in cellular and xenograft models leads to higher D2HG concentrations in cells, tumors, and sera compared to R132H.

View Article and Find Full Text PDF

Understanding the molecular and cellular processes involved in lung epithelial regeneration may fuel the development of therapeutic approaches for lung diseases. We combine mouse models allowing diphtheria toxin-mediated damage of specific epithelial cell types and parallel GFP-labeling of functionally dividing cells with single-cell transcriptomics to characterize the regeneration of the distal lung. We uncover cell types, including Krt13 basal and Krt15 club cells, detect an intermediate cell state between basal and goblet cells, reveal goblet cells as actively dividing progenitor cells, and provide evidence that adventitial fibroblasts act as supporting cells in epithelial regeneration.

View Article and Find Full Text PDF

Tumor heterogeneity and tumor-microglia interactions in primary and recurrent IDH1-mutant gliomas.

Cell Rep Med

November 2023

Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany; DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany. Electronic address:

The isocitrate dehydrogenase (IDH) gene is recurrently mutated in adult diffuse gliomas. IDH-mutant gliomas are categorized into oligodendrogliomas and astrocytomas, each with unique pathological features. Here, we use single-nucleus RNA and ATAC sequencing to compare the molecular heterogeneity of these glioma subtypes.

View Article and Find Full Text PDF

As spatially resolved multiplex profiling of RNA and proteins becomes more prominent, it is increasingly important to understand the statistical power available to test specific hypotheses when designing and interpreting such experiments. Ideally, it would be possible to create an oracle that predicts sampling requirements for generalized spatial experiments. However, the unknown number of relevant spatial features and the complexity of spatial data analysis make this challenging.

View Article and Find Full Text PDF

MITI minimum information guidelines for highly multiplexed tissue images.

Nat Methods

March 2022

Laboratory of Systems Pharmacology, Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, USA.

The imminent release of tissue atlases combining multi-channel microscopy with single cell sequencing and other omics data from normal and diseased specimens creates an urgent need for data and metadata standards that guide data deposition, curation and release. We describe a Minimum Information about highly multiplexed Tissue Imaging (MITI) standard that applies best practices developed for genomics and other microscopy data to highly multiplexed tissue images and traditional histology.

View Article and Find Full Text PDF

The inflamed rheumatic joint is a highly heterogeneous and complex tissue with dynamic recruitment and expansion of multiple cell types that interact in multifaceted ways within a localized area. Rheumatoid arthritis synovium has primarily been studied either by immunostaining or by molecular profiling after tissue homogenization. Here, we use Spatial Transcriptomics, where tissue-resident RNA is spatially labeled in situ with barcodes in a transcriptome-wide fashion, to study local tissue interactions at the site of chronic synovial inflammation.

View Article and Find Full Text PDF

Highly multiplexed tissue imaging makes detailed molecular analysis of single cells possible in a preserved spatial context. However, reproducible analysis of large multichannel images poses a substantial computational challenge. Here, we describe a modular and open-source computational pipeline, MCMICRO, for performing the sequential steps needed to transform whole-slide images into single-cell data.

View Article and Find Full Text PDF

Background: Autoimmune diseases are heterogeneous pathologies with difficult diagnosis and few therapeutic options. In the last decade, several omics studies have provided significant insights into the molecular mechanisms of these diseases. Nevertheless, data from different cohorts and pathologies are stored independently in public repositories and a unified resource is imperative to assist researchers in this field.

View Article and Find Full Text PDF

Advances in systems biology modeling: 10 years of crowdsourcing DREAM challenges.

Cell Syst

June 2021

Institute for Computational Biomedicine, Heidelberg University Hospital and Heidelberg University, Faculty of Medicine, Bioquant, Heidelberg 69120, Germany.

Computational and mathematical models are key to obtain a system-level understanding of biological processes, but their limitations have to be clearly defined to allow their proper application and interpretation. Crowdsourced benchmarks in the form of challenges provide an unbiased assessment of methods, and for the past decade, the Dialogue for Reverse Engineering Assessment and Methods (DREAM) organized more than 15 systems biology challenges. From transcription factor binding to dynamical network models, from signaling networks to gene regulation, from whole-cell models to cell-lineage reconstruction, and from single-cell positioning in a tissue to drug combinations and cell survival, the breadth is broad.

View Article and Find Full Text PDF

Detailed maps of the molecular basis of the disease are powerful tools for interpreting data and building predictive models. Modularity and composability are considered necessary network features for large-scale collaborative efforts to build comprehensive molecular descriptions of disease mechanisms. An effective way to create and manage large systems is to compose multiple subsystems.

View Article and Find Full Text PDF

Single-cell RNA-sequencing (scRNAseq) technologies are rapidly evolving. Although very informative, in standard scRNAseq experiments, the spatial organization of the cells in the tissue of origin is lost. Conversely, spatial RNA-seq technologies designed to maintain cell localization have limited throughput and gene coverage.

View Article and Find Full Text PDF

Community Assessment of the Predictability of Cancer Protein and Phosphoprotein Levels from Genomics and Transcriptomics.

Cell Syst

August 2020

Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Faculty of Medicine, 52074 Aachen, Germany; European Molecular Biology Laboratory-The European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK; Institute for Computational Biomedicine, Heidelberg University Hospital and Heidelberg University, Faculty of Medicine, Bioquant Heidelberg, Hedelberg 69120, Germany. Electronic address:

Cancer is driven by genomic alterations, but the processes causing this disease are largely performed by proteins. However, proteins are harder and more expensive to measure than genes and transcripts. To catalyze developments of methods to infer protein levels from other omics measurements, we leveraged crowdsourcing via the NCI-CPTAC DREAM proteogenomic challenge.

View Article and Find Full Text PDF

Drug combinations can expand therapeutic options and address cancer's resistance. However, the combinatorial space is enormous precluding its systematic exploration. Therefore, synergy prediction strategies are essential.

View Article and Find Full Text PDF