38 results match your criteria: "Health Research Institute Hospital La Fe (IIS La Fe)[Affiliation]"

Article Synopsis
  • * DM1 happens because of a problem with a gene that leads to muscle issues by decreasing a protein called MBNL1. AntimiRs can help increase this protein but need to be made better for human use.
  • * The treatment helped improve muscle cell problems and reduced harmful molecules in the cells, showing promise for helping different types of DM1 patients with varying genetic backgrounds.
View Article and Find Full Text PDF
Article Synopsis
  • * Using CRISPR-Cas9, the researchers created a cell line from a DMD patient that mimics the del45-55 mutation, restoring dystrophin expression and improving myogenic properties.
  • * The findings suggest that this approach can help develop better cellular models for studying DMD and understanding its underlying factors, which could inform future therapies.
View Article and Find Full Text PDF

Heart failure (HF) is associated with global changes in gene expression. Alternative mRNA splicing (AS) is a key regulatory mechanism underlying these changes. However, the whole status of molecules involved in the splicing process in human HF is unknown.

View Article and Find Full Text PDF

Delving into the clinical impact of NETs in pediatric cancer.

Pediatr Res

August 2024

Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain.

Pediatric cancer, a complex and heterogeneous group of diseases, continues to challenge medical research and treatment strategies. Despite advances in precision medicine and immunotherapy, certain aggressive subtypes of pediatric cancer are resistant to conventional therapies, requiring further exploration of potential therapeutic targets. Neutrophil extracellular traps (NETs), net-like structures released by neutrophils, have emerged as a potential player in the pediatric cancer landscape.

View Article and Find Full Text PDF

Positron Emission Tomography (PET) imaging after Y liver radioembolization is used for both lesion identification and dosimetry. Bayesian penalized likelihood (BPL) reconstruction algorithms are an alternative to ordered subset expectation maximization (OSEM) with improved image quality and lesion detectability. The investigation of optimal parameters for Y image reconstruction of Q.

View Article and Find Full Text PDF

Background: Small Extracellular Vesicles (sEVs) are nano-sized vesicles that are present in all biofluids including human milk (HM) playing a crucial role in cell-to-cell communication and the stimulation of the neonatal immune system. Oxylipins, which are bioactive lipids formed from polyunsaturated fatty acids, have gained considerable attention due to their potential role in mitigating disease progression and modulating the inflammatory status of breastfed infants. This study aims at an in-depth characterization of the oxylipin profiles of HM and, for the first time, of HM-derived sEVs (HMEVs) employing an ad-hoc developed and validated ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method.

View Article and Find Full Text PDF

Bone homeostasis is a complex process in which some Eph kinase receptors and their ephrin ligands appear to be involved. In the present study, we address this issue by examining, both in vitro and in vivo, the role of EphB2 and EphB3 in mesenchymal stromal/stem cell (MSC) differentiation into bone tissue. This was first evaluated by quantitative reverse transcription PCR (RT-qPCR) and histological staining in MSCs cultured in specific mediums revealing that although EphB2-/- MSCs mainly expressed pro-adipogenic transcription factors, EphB3-/- MSCs showed abundant osteogenic transcripts, such as Runx2, Msx2, and Sp7.

View Article and Find Full Text PDF

X-linked hypophosphatemia (XLH) is a rare genetic disorder that increases fibroblast growth factor 23 (FGF23). XLH patients have an elevated risk of early-onset hypertension. The precise factors contributing to hypertension in XLH patients have yet to be identified.

View Article and Find Full Text PDF

Heart failure (HF) is a disease related to bioenergetic mitochondrial abnormalities. However, the whole status of molecules involved in the oxidative phosphorylation system (OXPHOS) is unknown. Therefore, we analyzed the OXPHOS transcriptome of human cardiac tissue by RNA-seq analyses (mRNA = 36; ncRNA = 30) in HF patients (ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM)) and control subjects.

View Article and Find Full Text PDF

Background: Cardiac fibroblast activation protein (FAP) has an emerging role in heart failure (HF). A paradoxical reduction in its levels in pathological conditions associated with acute processes has been observed. We aimed to identify FAP cardiac tissue expression and its relationship with the main cardiac fibrosis-related signaling pathways, and to compare plasma FAP levels in acute and chronic HF patients.

View Article and Find Full Text PDF

Background: There is a dire need for specific, noninvasive biomarkers that can accurately detect cardiac acute cellular rejection (ACR) early. Previously, we described miR-144-3p as an excellent candidate for detecting grade ≥2R ACR. Now, we investigated the combination of miR-144-3p with miR-652-3p, other differentially expressed serum miRNA we previously described, to improve diagnostic accuracy mainly in mild rejection to avoid reaching severe stages.

View Article and Find Full Text PDF

Ischemic cardiomyopathy (ICM) is associated with abnormal microRNA expression levels that involve an altered gene expression profile. However, little is known about the underlying causes of microRNA disruption in ICM and whether microRNA maturation is compromised. Therefore, we focused on microRNA maturation defects analysis and the implication of the microRNA biogenesis pathway and redox-sensitive microRNAs (redoximiRs).

View Article and Find Full Text PDF

The lipidomic and inflammatory profiles of visceral and subcutaneous adipose tissues are distinctly regulated by the SGLT2 inhibitor empagliflozin in Zucker diabetic fatty rats.

Biomed Pharmacother

May 2023

Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain.

The pharmacological inhibition of sodium-glucose cotransporter 2 (SGLT2) has emerged as a treatment for patients with type 2 diabetes mellitus (T2DM), cardiovascular disease and/or other metabolic disturbances, although some of the mechanisms implicated in their beneficial effects are unknown. The SGLT2 inhibitor (SGLT2i) empagliflozin has been suggested as a regulator of adiposity, energy metabolism, and systemic inflammation in adipose tissue. The aim of our study was to evaluate the impact of a 6-week-empagliflozin treatment on the lipidome of visceral (VAT) and subcutaneous adipose tissue (SAT) from diabetic obese Zucker Diabetic Fatty (ZDF) rats using an untargeted metabolomics approach.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers created a cell model of LGMDD2 that mimics important disease features, like overexpressed proteins and defective muscle markers, and used CRISPR-Cas9 editing to correct the mutation.
  • * The editing significantly improved the cells' conditions, with many molecular changes reverted to normal levels, highlighting CRISPR-Cas9 as a promising therapeutic tool for LGMDD2 and similar disorders.
View Article and Find Full Text PDF

Despite the reduction of cardiovascular events, including the risk of death, associated with sodium/glucose cotransporter 2 inhibitors (SGLT2i), their basic action remains unclear. Sodium/hydrogen exchanger (NHE) has been proposed as the mechanism of action, but there are controversies related to its function and expression in heart failure (HF). We hypothesized that sodium transported-related molecules could be altered in HF and modulated through SGLT2i.

View Article and Find Full Text PDF

Patients on peritoneal dialysis (PD) have an increased risk of cardiovascular disease (CVD) and an atherogenic lipid profile generated by exposure to high glucose dialysis solutions. In the general population, the reduction of classic lipids biomarkers is associated with improved clinical outcomes; however, the same results have not been seen in PD population, a lack of data this study aims to fulfill. Single-center prospective observational study of a cohort of CKD patients who started renal replacement therapy with continuous ambulatory peritoneal dialysis.

View Article and Find Full Text PDF

Background: Given the central role of sarcomeric dysfunction in cardiomyocyte biology and sarcomere alterations described in endomyocardial biopsies of transplant patients with rejection, we hypothesized that the serum expression levels of genes encoding sarcomeric proteins were altered in acute cellular rejection (ACR). The aim of this study is to identify altered sarcomere-related molecules in serum and to evaluate their diagnostic accuracy for detecting rejection episodes.

Methods: Serum samples from transplant recipients undergoing routine endomyocardial biopsies were included in an RNA sequencing analysis (n = 40).

View Article and Find Full Text PDF

Objective: Duchenne muscular dystrophy (DMD) exon 45-55 deletion (del45-55) has been postulated as a model that could treat up to 60% of DMD patients, but the associated clinical variability and complications require clarification. We aimed to understand the phenotypes and potential modifying factors of this dystrophinopathy subset.

Methods: This cross-sectional, multicenter cohort study applied clinical and functional evaluation.

View Article and Find Full Text PDF

The non-invasive diagnosis of acute cellular rejection (ACR) is a major challenge. We performed a molecular study analyzing the predictive capacity of serum RanGTPase AP1 (RANGAP1) for diagnosing ACR during the first year after heart transplantation (HT). We included the serum samples of 75 consecutive HT patients, extracted after clinical stability, to determine the RANGAP1 levels through ELISA.

View Article and Find Full Text PDF

Oxidative stress plays a major role in the pathogenesis of retinitis pigmentosa (RP). The main goal of this study was to evaluate the effect of 2-year nutritional intervention with antioxidant nutraceuticals on the visual function of RP patients. Secondly, we assessed how nutritional intervention affected ocular and systemic redox status.

View Article and Find Full Text PDF

Acute cellular rejection is a major complication in heart transplantation. We focus on the analysis of new ultrastructural findings in cardiac biopsy rejection based on mitochondrial intracellular organization. This study includes heart transplanted patients from a single center who were referred for endomyocardial biopsies as a scheduled routine screening.

View Article and Find Full Text PDF

Disturbances in sphingolipid metabolism lead to biological function dysregulation in many diseases, but it has not been described in heart failure (HF). Sphingosine-1-phosphate (S1P) levels have not ever been measured in the myocardium. Therefore, we analyze the gene dysregulation of human cardiac tissue by mRNA-seq ( = 36) and ncRNA-seq ( = 50).

View Article and Find Full Text PDF

Background: The development of noninvasive approaches for the early diagnosis of acute cellular rejection (ACR), an important complication of cardiac transplantation, is of great importance in clinical practice. We conducted a nontargeted transcriptomic study focused on identifying serum miRNAs to evaluate their diagnostic accuracy for detecting rejection episodes.

Methods: We included consecutive serum samples from transplant recipients undergoing routine endomyocardial biopsies.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of telomeres and oxidative stress in ischaemic cardiomyopathy (ICM), focusing on how telomere maintenance mechanisms are influenced by oxidative stress.
  • RNA-seq analyses revealed dysregulation of shelterin and cohesin complexes, linked to increased cellular oxidative stress response and altered telomeric DNA repair mechanisms.
  • Findings indicate that changes in mRNA levels associated with telomere protection and oxidative stress are correlated with left ventricular size and cardiac dysfunction in ICM.
View Article and Find Full Text PDF

Alterations in the Nucleocytoplasmic Transport in Heart Transplant Rejection.

Transplant Proc

November 2021

Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Valencia, Spain; Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain; Consorcio Centro de Investigación Biomédica en Red, M.P (CIBERCV), Madrid, Spain.

Background: Nucleocytoplasmic transport is a crucial process for cell function. Previous studies have observed alterations in different molecules involved in it, relating them to ventricular function. However, there are no published data evaluating possible differences in the expression of these molecules in heart transplantation (HT) recipients.

View Article and Find Full Text PDF