51 results match your criteria: "Health Biotechnology Joint Research and Application Center of Excellence[Affiliation]"

The tumor microenvironment, which is the tailored physiological milieu of heterogeneous cancer cell populations surrounded by stromal and immune cells as well as extracellular matrix components, is a leading modulator of critical cancer hallmarks and one of the most significant prognostic indicators in breast cancer. In the last few decades, with the discovery of the interactions of ncRNAs with diverse cellular molecules, considerable emphasis has been devoted to understanding their direct and indirect roles in specific functions in breast cancer. Collectively, all of these have revealed that the competitive action of protein-coding RNAs and ncRNAs such as circRNAs and lncRNAs, which have a shared affinity for miRNAs, play a vital role in the molecular regulation of breast cancer.

View Article and Find Full Text PDF
Article Synopsis
  • There is a growing focus on protecting and restoring cultural heritage materials, emphasizing the need for effective analysis methods.
  • Non-invasive techniques like Raman spectroscopy are advantageous due to their speed, reliable identification, low costs, and ability to analyze materials on-site.
  • The integration of chemometrics and multivariate statistics with Raman spectroscopy enhances the evaluation of various cultural heritage materials, providing valuable insights from past research.
View Article and Find Full Text PDF

Bacterial nanocelluloses as sustainable biomaterials for advanced wound healing and dressings.

J Mater Chem B

December 2024

Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Türkiye.

Wound healing remains a significant clinical challenge, calling for innovative approaches to expedite the recovery process and improve patient outcomes. Bacterial nanocelluloses (BNCs) have emerged as a promising solution in the field of wound healing and dressings due to their unique properties such as high crystallinity, mechanical strength, high purity, porosity, high water absorption capacity, biodegradability, biocompatibility, sustainability, and flexibility. BNC-based materials can be applied for the treatment of different types of wounds, from second-degree burns to skin tears, biopsy sites, and diabetic and ischemic wounds.

View Article and Find Full Text PDF

Radiomics-Based Diagnosis in Dentomaxillofacial Radiology: A Systematic Review.

J Imaging Inform Med

November 2024

Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, Turkey.

Radiomics is a quantitative tool for digital image analysis. This systematic review aims to investigate the scientific articles to evaluate the potential implications of Radiomics analysis in Dentomaxillofacial Radiology (DMFR). Studies regarding Radiomics applications in DMFR and human samples, in vivo study, a case reports/series if ≧5 samples were included, while case reports/series if < 5 samples, articles other than in English, abstracts without full text, and studies published before 2015 were excluded.

View Article and Find Full Text PDF

The main objective of this study is to construct radially aligned PCL nanofibers reinforced with levan polymer and investigate their in vitro biological activities thoroughly. First Halomonas levan (HL) polysaccharide is hydrolyzed (hHL) and subjected to sulfation to attain Sulfated hydrolyzed Halomonas levan (ShHL)-based material indicating heparin mimetic properties. Then, optimization studies are carried out to produce coaxially generated radially aligned Poly(caprolactone) (PCL) -ShHL nanofibers via electrospinning.

View Article and Find Full Text PDF

Nanoparticle-based antigen carrier systems have become a significant area of research with the advancement of nanotechnology. Biodegradable polymers have emerged as particularly promising carrier vehicles due to their ability to address the limitations of existing vaccine systems. In this study, we successfully encapsulated the G5-24 linear peptide, located between amino acids 253 and 275 in the primary sequence of the rabies virus G protein, into biodegradable and biocompatible PLGA copolymer using the double emulsion solvent evaporation method.

View Article and Find Full Text PDF

Aim: This study aimed to investigate the effects of 45S5 bioactive glass-ointment (BG) on cutaneous wound healing in rats at the molecular, biochemical, and histopathological levels.

Materials And Methods: Thirty-two rats were divided into four groups (n = 8): Control, Sham, BG, and DEX (Dexpanthenol). While no wound treatment was applied to the CONTROL, a wound model was created in the Sham, and no treatment was applied.

View Article and Find Full Text PDF

Introduction: Osteoporosis, one of the common bone diseases, manifests itself as a decrease in bone mass. Recently, the use of medicinal plants in the search for effective and low-toxicity therapeutics for the prevention or treatment of osteoporosis has become a trending topic.

Objective: In this study, we aim to prepare a controlled drug carrier system loaded with Gypsophila eriocalyx to determine its potential for anti-osteoporosis applications.

View Article and Find Full Text PDF

Several therapeutic approaches have been developed to promote bone regeneration, including guided bone regeneration (GBR), where barrier membranes play a crucial role in segregating soft tissue and facilitating bone growth. This study emphasizes the importance of considering specific tissue requirements in the design of materials for tissue regeneration, with a focus on the development of a double-layered membrane to mimic both soft and hard tissues within the context of GBR. The hard tissue-facing layer comprises collagen and zinc-doped bioactive glass to support bone tissue regeneration, while the soft tissue-facing layer combines collagen and chitosan.

View Article and Find Full Text PDF

Graphene has become a prominent material in cancer research in recent years. Graphene and its derivatives also attract attention as carriers in drug delivery systems. In this study, we designed a graphene oxide (GO)-based methotrexate (MTX)-loaded and folic acid (FA)-linked drug delivery system.

View Article and Find Full Text PDF

A smartphone-based sensor for detection of iron and potassium in food and beverage samples.

Food Chem

October 2024

Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220 Istanbul, Turkey; Yildiz Technical University, Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Türkiye. Electronic address:

A novel approach for simultaneous detection of iron and potassium via a smartphone-based potentiometric method is proposed in this study. The screen printed electrodes were modified with carbon black nanomaterial and ion selective membrane including zinc (II) phtalocyanine as the ionophore. The developed Fe-selective electrode and K-selective electrode exhibited detection limits of 1.

View Article and Find Full Text PDF

Acute lymphoblastic leukemia (ALL) is a hematological malignancy characterized by aberrant proliferation and accumulation of lymphoid precursor cells within the bone marrow. The tyrosine kinase inhibitor (TKI), imatinib mesylate, has played a significant role in the treatment of Philadelphia chromosome-positive ALL (Ph + ALL). However, the achievement of durable and sustained therapeutic success remains a challenge due to the development of TKI resistance during the clinical course.

View Article and Find Full Text PDF

Therapeutic peptides for coronary artery diseases: in silico methods and current perspectives.

Amino Acids

May 2024

Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey.

Many drug formulations containing small active molecules are used for the treatment of coronary artery disease, which affects a significant part of the world's population. However, the inadequate profile of these molecules in terms of therapeutic efficacy has led to the therapeutic use of protein and peptide-based biomolecules with superior properties, such as target-specific affinity and low immunogenicity, in critical diseases. Protein‒protein interactions, as a consequence of advances in molecular techniques with strategies involving the combined use of in silico methods, have enabled the design of therapeutic peptides to reach an advanced dimension.

View Article and Find Full Text PDF

The COVID-19 pandemic underlines the need for effective strategies for controlling virus spread and ensuring sensitive detection of SARS-CoV-2. This review presents the potential of nanomaterial-enabled optical biosensors for rapid and low-cost detection of SARS-CoV-2 biomarkers, demonstrating a comprehensive analysis including colorimetric, fluorescence, surface-enhanced Raman scattering, and surface plasmon resonance detection methods. Nanomaterials including metal-based nanomaterials, metal-organic frame-based nanoparticles, nanorods, nanoporous materials, nanoshell materials, and magnetic nanoparticles employed in the production of optical biosensors are presented in detail.

View Article and Find Full Text PDF

This study demonstrates the potential of sono-photodynamic therapy as an effective approach for enhancing singlet oxygen generation using the synthesized Schiff-base diaxially substituted silicon phthalocyanines. In photochemical studies, the singlet oxygen quantum yields (Φ) were determined as 0.43 for Si1a, 0.

View Article and Find Full Text PDF

Background/aim: The complicated nature of tumor formation makes it difficult to identify discriminatory genes. Recently, transcriptome-based supervised classification methods using support vector machines (SVMs) have become popular in this field. However, the inclusion of less significant variables in the construction of classification models can lead to misclassification.

View Article and Find Full Text PDF

The emergence of antibiotic resistance makes the treatment of bacterial infections difficult and necessitates the development of alternative strategies. Targeted drug delivery systems are attracting great interest in overcoming the limitations of traditional antibiotics. Here, we aimed for targeted delivery of rifaximin (RFX) by decorating RFX-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) with synthetic P6.

View Article and Find Full Text PDF

Tumor mutation burden (TMB) has profound implications for personalized cancer therapy, particularly immunotherapy. However, the size of the panel and the cutoff values for an accurate determination of TMB are still controversial. In this study, a pan-cancer analysis was performed on 22 cancer types from The Cancer Genome Atlas.

View Article and Find Full Text PDF

Competing endogenous RNAs play key roles in cellular molecular mechanisms through cross-talk in post-transcriptional interactions. Studies on ceRNA cross-talk, which is particularly dependent on the abundance of free transcripts, generally involve large- and small-scale studies involving the integration of transcriptomic data from tissues and correlation analyses. This abundance-dependent nature of ceRNA interactions suggests that tissue- and condition-specific ceRNA dynamics may fluctuate.

View Article and Find Full Text PDF

Tympanic membrane (TM) perforations, primarily induced by middle ear infections, the introduction of foreign objects into the ear, and acoustic trauma, lead to hearing abnormalities and ear infections. We describe the design and fabrication of a novel composite patch containing photocrosslinkable gelatin methacryloyl (GelMA) and keratin methacryloyl (KerMA) hydrogels. GelMA-KerMA patches containing conical microneedles in their design were developed using the digital light processing (DLP) 3D printing approach.

View Article and Find Full Text PDF

Breast cancer is a life-threatening disease that is gaining increasing importance due to its rising incidence, highlighting the need for novel treatment methods with the least disadvantages. Recently, scientists have focused on developing therapeutic treatment modalities for effective cancer treatment. In contrast to conventional cancer treatment methods such as immunotherapy, surgery, chemotherapy, or radiotherapy, photodynamic therapy (PDT) is gaining prominence.

View Article and Find Full Text PDF

Respiratory viruses have caused many pandemics from past to present and are among the top global public health problems due to their rate of spread. The recently experienced COVID-19 pandemic has led to an understanding of the importance of rapid diagnostic tests to prevent epidemics and the difficulties of developing new vaccines. On the other hand, the emergence of resistance to existing antiviral drugs during the treatment process poses a major problem for society and global health systems.

View Article and Find Full Text PDF

One of the well-known postoperative complications that requires a number of prophylactic and curative treatments is infection. The implications of postsurgical infections are further exacerbated by the emergence of antibiotic-resistant strains. Reduced effectiveness of synthetic antibiotics has led to an interest in plant-based substances.

View Article and Find Full Text PDF
Article Synopsis
  • Genome-scale metabolic models (GEMs) are important tools for studying the metabolism of various organisms, thanks to advances in genome sequencing and biochemical data availability.
  • As biological data and mathematical modeling techniques improve, GEMs will continue to evolve, potentially incorporating machine learning to enhance their functionality.
  • This review highlights the current status of GEMs, their potential integration with machine learning for research applications, and the possibility of extending them into more comprehensive cellular models.
View Article and Find Full Text PDF