60 results match your criteria: "Hawaii Agriculture Research Center[Affiliation]"

Article Synopsis
  • * RNA sequencing and virus indexing revealed the presence of six viruses, including Canna yellow mottle virus and two new ones, causing symptoms in infected plants.
  • * Mealybugs and aphids were identified as vectors for these viruses, with further studies needed to confirm the relationship between viral infections and the decline in flowering ginger health.
View Article and Find Full Text PDF

Genomic and Transcriptomic Insights into the Evolution of C4 Photosynthesis in Grasses.

Genome Biol Evol

August 2024

Tropical Plant Genetic Resources and Disease Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Hilo, HI 96720, USA.

Article Synopsis
  • - C4 photosynthesis has evolved over 62 times independently across 19 angiosperm families, but this seems odd given the complex changes needed to switch from C3 to C4 photosynthesis.
  • - The study analyzed genomic and transcriptomic data to understand the shared molecular changes in C4 grasses, revealing that the expansion of certain gene families and specific amino acid adaptations were key factors in this evolution.
  • - Findings suggest that Chloridoideae grasses had a better genetic setup for C4 photosynthesis than Panicoideae grasses, explaining why C4 evolved earlier and more frequently in the former, while also highlighting shared regulatory features of C4 genes across different grass lineages.
View Article and Find Full Text PDF

Candidate male sterility genes were identified in sugarcane, which interacts with kinase-related proteins, transcription factors, and plant hormone signaling pathways to regulate stamen and anther development. Saccharum officinarum is a cultivated sugarcane species that its predominant feature is high sucrose content in stems. Flowering is necessary for breeding new cultivars but will terminate plant growth and reduce sugar yield.

View Article and Find Full Text PDF

First Report of the Physiological Race (XXIV) of (Coffee Leaf Rust) in Hawaii.

Plant Dis

April 2023

Centro de Investigação das Ferrugens do Cafeeiro, 467332, Oeiras, Lisboa, Portugal.

Hawaii's coffee industry, produced commercially on six islands by over 1,470 growers on ~10,000 acres, is conservatively valued at $100M per year (USDA NASS 2023). Until late October 2020, Hawaii was the only major coffee producing region of the world that was free of Coffee Leaf Rust (CLR). Growers are currently facing their most formidable production challenge with the arrival of Berk.

View Article and Find Full Text PDF
Article Synopsis
  • * Comparative analysis showed the genomes of transgenic SunUp and its parent Sunset are nearly identical, with key insertions and translocations found on chromosome 5.
  • * Research highlighted the importance of specific genes in carotenoid production during domestication and contributed to a better understanding of sex chromosomes and their effects on papaya breeding and improvement efforts.
View Article and Find Full Text PDF

Adopting modern gene-editing technologies for trait improvement in agriculture requires important workflow developments, yet these developments are not often discussed. Using tropical crop systems as a case study, we describe a workflow broken down into discrete processes with specific steps and decision points that allow for the practical application of the CRISPR-Cas gene editing platform in a crop of interest. While we present the steps of developing genome-edited plants as sequential, in practice parts can be done in parallel, which are discussed in this perspective.

View Article and Find Full Text PDF

Background: Carica papaya is a trioecious plant species with a genetic sex-determination system defined by sex chromosomes. Under unfavorable environmental conditions male and hermaphrodite exhibit sex-reversal. Previous genomic research revealed few candidate genes for sex differentiation in this species.

View Article and Find Full Text PDF

The papaya diminutive mutant exhibits miniature stature, retarded growth and reduced fertility. This undesirable mutation appeared in the variety 'Sunset', the progenitor of the transgenic line 'SunUp', and was accidentally carried forward into breeding populations. The diminutive mutation was mapped to chromosome 2 and fine mapped to scaffold 25.

View Article and Find Full Text PDF

The bracteatus pineapple genome and domestication of clonally propagated crops.

Nat Genet

October 2019

FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.

Article Synopsis
  • Researchers sequenced the genome of the pineapple variety Ananas comosus var. bracteatus CB5, revealing insights into its genetic structure with 29,412 identified genes across 25 chromosomes.
  • The study compared multiple pineapple genomes and revealed specific genetic traits related to fiber production, sugar accumulation, and fruit maturation, confirming varied domestication processes across cultivars.
  • The findings indicate a blend of sexual and asexual reproduction in the domestication of clonally propagated crops, encouraging further investigation into these processes for other similar species.
View Article and Find Full Text PDF

Oats are an important cereal crop worldwide, and they also serve as a phytoremediation crop to ameliorate salinized and alkalized soils. However, the mechanism of the oat response to alkali remains unclear. Physiological and tandem mass tag (TMT)-based proteomic analyses were employed to elucidate the mechanism of the oat response to alkali stress.

View Article and Find Full Text PDF

Publisher Correction: Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L.

Nat Genet

December 2018

Fujian Agriculture and Forestry University and University of Illinois at Urbana-Champaign School of Integrative Biology Joint Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.

In the version of this article originally published, the accession codes listed in the data availability section were incorrect and the section was incomplete. The text for this section should have read "The genome assembly and gene annotation have been deposited in the NCBI database under accession number QVOL00000000, BioProject number PRJNA483885 and BioSample number SAMN09753102. The data can also be downloaded from the following link: http://www.

View Article and Find Full Text PDF

Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L.

Nat Genet

November 2018

Fujian Agriculture and Forestry University and University of Illinois at Urbana-Champaign School of Integrative Biology Joint Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.

Modern sugarcanes are polyploid interspecific hybrids, combining high sugar content from Saccharum officinarum with hardiness, disease resistance and ratooning of Saccharum spontaneum. Sequencing of a haploid S. spontaneum, AP85-441, facilitated the assembly of 32 pseudo-chromosomes comprising 8 homologous groups of 4 members each, bearing 35,525 genes with alleles defined.

View Article and Find Full Text PDF

Sugarcane is among the most efficient crops in converting solar energy into chemical energy. However, due to its complex genome structure and inheritance, the genetic and molecular basis of biomass yield in sugarcane is still largely unknown. We created an F2 segregating population by crossing S.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

Cell wall metabolism and hexose allocation contribute to biomass accumulation in high yielding extreme segregants of a Saccharum interspecific F2 population.

BMC Genomics

October 2017

FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.

Background: Sugarcane is an emerging dual-purpose biofuel crop for energy and sugar production, owing to its rapid growth rate, high sucrose storage in the stems, and high lignocellulosic yield. It has the highest biomass production reaching 1.9 billion tonnes in 2014 worldwide.

View Article and Find Full Text PDF

Papaya ringspot virus (PRSV) seriously limits papaya (Carica papaya L.) production in tropical and subtropical areas throughout the world. Coat protein (CP)- transgenic papaya lines resistant to PRSV isolates in the sequence-homology-dependent manner have been developed in the U.

View Article and Find Full Text PDF

The expression of sucrose-phosphate synthase II (SPSII) and sucrose transporters ShSUT1A and ShSUT4 were determined by RT-PCR and qRT-PCR in the sink and source leaves and in rind and pith of mature internodes of four high-yielding Hawaiian sugarcane cultivars. Expression of SPSII, ShSUT1A, and ShSUT4 was lower in pith than in rind, except in one cultivar, but else quite similar in the cultivars. The strong expression of transporter ShSUT4 in the rind of the internodes may hint to a special role of ShSUT4 in the rind.

View Article and Find Full Text PDF

Background: The papaya Y-linked region showed clear population structure, resulting in the detection of the ancestral male population that domesticated hermaphrodite papayas were selected from. The same populations were used to study nucleotide diversity and population structure in the X-linked region.

Results: Diversity is very low for all genes in the X-linked region in the wild dioecious population, with nucleotide diversity π  = 0.

View Article and Find Full Text PDF

Salinity adversely affects plant growth and production. Oat is a moderately salt-tolerant crop and can contribute to improving saline soil. The physiological and molecular responses of the oat plant to long-term salinity were studied.

View Article and Find Full Text PDF

Geographical and Genetic Divergence Among Papaya ringspot virus Populations Within Hainan Province, China.

Phytopathology

August 2016

First author: College of Agriculture, Hainan University, Haikou, Hainan, China 570228; first, second, third, fourth, fifth, sixth, eighth, and ninth authors: Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, P.R. China, and Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, Hainan, China 571101; and second, fourth, and seventh authors: Hawaii Agriculture Research Center, Waipahu 96797.

Papaya ringspot virus (PRSV) severely affects the global papaya industry. Transgenic papaya has been proven to have effective resistance to PRSV isolates from Hawaii, Thailand, Taiwan, and other countries. However, those transgenic cultivars failed to show resistance to Hainan Island isolates.

View Article and Find Full Text PDF

Background: Oat is considered as a moderately salt-tolerant crop that could be used to improve saline and alkaline soil. Previous studies have focused on short-term salt stress exposure (0.5-48 h), while molecular mechanisms of salt tolerance in oat remain unclear.

View Article and Find Full Text PDF

The pineapple genome and the evolution of CAM photosynthesis.

Nat Genet

December 2015

Texas A&M AgriLife Research, Department of Plant Pathology and Microbiology, Texas A&M University System, Dallas, Texas, USA.

Pineapple (Ananas comosus (L.) Merr.) is the most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water-use efficiency, and the second most important tropical fruit.

View Article and Find Full Text PDF

Genome-wide analysis of potential cross-reactive endogenous allergens in rice ( L.).

Toxicol Rep

July 2015

State Key Biotechnology Laboratory for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.

The proteins in the food are the source of common allergic components to certain patients. Current lists of plant endogenous allergens were based on the medical/clinical reports as well as laboratory results. Plant genome sequences made it possible to predict and characterize the genome-wide of putative endogenous allergens in rice ( L.

View Article and Find Full Text PDF

The quality of coffee green beans is generally evaluated by the sensory cupping test, rather than by chemical compound-based criteria. In this study, we examined the relationship between metabolites and cupping scores for 36 varieties of beans, using a nontargeted LC-MS-based metabolic profiling technique. The cupping score was precisely predicted with the metabolic information measured using LC-MS.

View Article and Find Full Text PDF

Origin and domestication of papaya Yh chromosome.

Genome Res

April 2015

FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA;

Sex in papaya is controlled by a pair of nascent sex chromosomes. Females are XX, and two slightly different Y chromosomes distinguish males (XY) and hermaphrodites (XY(h)). The hermaphrodite-specific region of the Y(h) chromosome (HSY) and its X chromosome counterpart were sequenced and analyzed previously.

View Article and Find Full Text PDF