794 results match your criteria: "Harvard John A. Paulson School of Engineering and Applied Sciences[Affiliation]"

Cell therapies are at the forefront of novel therapeutics. Neutrophils, despite being the most populous immune cells in human blood circulation, are not considered a viable option for cellular therapies because of their short lifespan and poor understanding of their role in the pathophysiology of various diseases. In inflammatory conditions, neutrophils exhibit an activated phenotype.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) represent new therapeutic candidates against glioblastoma multiforme (GBM); however, their efficacy is clinically limited due to both local and systemic immunosuppressive environments. Hence, therapeutic approaches that stimulate local and systemic immune environments can improve the efficacy of ICIs. Here, we report an adoptive cell therapy employing neutrophils (NE) that are activated via surface attachment of drug-free disk-shaped backpacks, termed Cyto-Adhesive Micro-Patches (CAMPs) for treating GBM.

View Article and Find Full Text PDF

High organofluorine concentrations in municipal wastewater affect downstream drinking water supplies for millions of Americans.

Proc Natl Acad Sci U S A

January 2025

Environmental Science & Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134.

Wastewater receives per- and polyfluoroalkyl substances (PFAS) from diverse consumer and industrial sources, and discharges are known to be a concern for drinking water quality. The PFAS family includes thousands of potential chemical structures containing organofluorine moieties. Exposures to a few well-studied PFAS, mainly perfluoroalkyl acids (PFAA), have been associated with increased risk of many adverse health outcomes, prompting federal drinking water regulations for six compounds in 2024.

View Article and Find Full Text PDF

Review of the environmental and health risks of hydraulic fracturing fluids.

Heliyon

January 2025

Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Lebanon.

The composition of hydraulic fracturing (HF) fluid poses risks to human health and the environment by impacting drinking water sources. Fracturing fluid recovery rate is highly variable, and the fact that a high percentage of the injected HF fluid is not produced back to the surface in some areas raises questions about its fate and possible migration into aquifers. In this paper, the composition of the HF fluid and related toxicity are described, along with insights about the environmental impact linked with HF fluid, synthesized spill data, main factors affecting the flow-back ratio, and induced seismicity related to HF activities.

View Article and Find Full Text PDF

A truncated isoform of Connexin43 caps actin to organize forward delivery of full-length Connexin43.

J Cell Biol

March 2025

Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA.

While membrane proteins such as ion channels continuously turn over and require replacement, the mechanisms of specificity of efficient channel delivery to appropriate membrane subdomains remain poorly understood. GJA1-20k is a truncated Connexin43 (Cx43) isoform arising from translation initiating at an internal start codon within the same parent GJA1 mRNA and is requisite for full-length Cx43 trafficking to cell borders. GJA1-20k does not have a full transmembrane domain, and it is not known how GJA1-20k enables forward delivery of Cx43 hemichannels.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) patients exhibit compromised intestinal barrier function and decreased mucus accumulation, as well as increased inflammation, fibrosis, and cancer risk, with symptoms often being exacerbated in women during pregnancy. Here, we show that these IBD hallmarks can be replicated using human Organ Chips lined by IBD patient-derived colon epithelial cells interfaced with matched fibroblasts cultured under flow. Use of heterotypic tissue recombinants revealed that IBD fibroblasts are the primary drivers of multiple IBD symptoms.

View Article and Find Full Text PDF

Ethical considerations for biobanks serving underrepresented populations.

Bioethics

December 2024

Department of Biomedical Engineering & Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, Indiana, USA.

Biobanks are essential biological database resources for the scientific community, enabling research on the molecular, cellular, and genetic basis of human disease. They are crucial for computational, data-driven biomedical research, which advances precision medicine and the development of targeted therapies. However, biobanks often lack racial and ethnic diversity, with many data sets predominantly comprising individuals of white, primarily northern European, ancestry.

View Article and Find Full Text PDF

Ambidirectionality, which is the ability of structural elements to move beyond a reference state in two opposite directions, is common in nature. However, conventional soft materials are typically limited to a single, unidirectional deformation unless complex hybrid constructs are used. We exploited the combination of mesogen self-assembly, polymer chain elasticity, and polymerization-induced stress to design liquid crystalline elastomers that exhibit two mesophases: chevron smectic C (cSmC) and smectic A (SmA).

View Article and Find Full Text PDF

Texas: A green hydrogen hub to decarbonize the United States and beyond.

Proc Natl Acad Sci U S A

December 2024

Harvard-China Project on Energy, Economy and Environment, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.

Article Synopsis
  • Texas, the largest oil and gas producer in the U.S., is examining the potential of green hydrogen as a sustainable energy source to support its decarbonization efforts.
  • The study reveals that by 2030, Texas could produce over 50 million tons of green hydrogen at a competitive price, making it a viable alternative to blue hydrogen and fossil fuels.
  • With strong renewable resources and existing infrastructure, Texas has the opportunity to position itself as a significant supplier of green hydrogen and ammonia, meeting both domestic and international energy demands.
View Article and Find Full Text PDF

Quantum scars refer to eigenstates with enhanced probability density along unstable classical periodic orbits. First predicted 40 years ago, scars are special eigenstates that counterintuitively defy ergodicity in quantum systems whose classical counterpart is chaotic. Despite the importance and long history of scars, their direct visualization in quantum systems remains an open field.

View Article and Find Full Text PDF

Light-based patterning of synthetic and biological hydrogels enables precise spatial and temporal control over the formation of chemical bonds. However, photoinitiators are typically used to generate free radicals, which are detrimental to human cells. Here, we report a photoinitiator- and radical-free method based on -nitrobenzyl alcohol (NBA) photolysis, which gives rise to highly reactive nitroso and benzaldehyde groups.

View Article and Find Full Text PDF

Substantial Mercury Releases and Local Deposition from Permafrost Peatland Wildfires in Southwestern Alaska.

Environ Sci Technol

November 2024

Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.

Increasing wildfire activity at high northern latitudes has the potential to mobilize large amounts of terrestrial mercury (Hg). However, understanding implications for Hg cycling and ecosystems is hindered by sparse research on peatland wildfire Hg emissions. In this study, we used measurements of soil organic carbon (SOC) and Hg, burn depth, and environmental indices derived from satellite remote sensing to develop machine learning models for predicting Hg emissions from major wildfires in the permafrost peatland of the Yukon-Kuskokwim Delta (YKD) in southwestern Alaska.

View Article and Find Full Text PDF

Tumors are complex assemblies of cellular and acellular structures patterned on spatial scales from microns to centimeters. Study of these assemblies has advanced dramatically with the introduction of high-plex spatial profiling. Image-based profiling methods reveal the intensities and spatial distributions of 20-100 proteins at subcellular resolution in 10-10 cells per specimen.

View Article and Find Full Text PDF

Complex non-local behavior makes designing high efficiency and multifunctional metasurfaces a significant challenge. While using libraries of meta-atoms provide a simple and fast implementation methodology, pillar to pillar interaction often imposes performance limitations. On the other extreme, inverse design based on topology optimization leverages non-local coupling to achieve high efficiency, but leads to complex and difficult to fabricate structures.

View Article and Find Full Text PDF

Precision game engineering through reshaping strategic payoffs.

Sci Rep

October 2024

Mucosal Immunology and Biology Research Center, Pediatrics Department, Massachusetts General Hospital, Boston, MA, USA.

Nash equilibrium is a key concept in game theory fundamental for elucidating the equilibrium state of strategic interactions, with applications in diverse fields such as economics, political science, and biology. However, the Nash equilibrium may not always align with desired outcomes within the broader system. This article introduces a novel game engineering framework that tweaks strategic payoffs within a game to achieve a pre-defined desired Nash equilibrium while averting undesired ones.

View Article and Find Full Text PDF
Article Synopsis
  • Hybrid systems show promise for exploring unconventional superconductivity and topological states, but their small size makes them difficult to measure with standard techniques.
  • The authors present a new microwave-based probe to measure superfluid density in micrometer-sized superconductors, revealing a two-fold anisotropic superfluid density in a superconductor-ferromagnet bilayer.
  • The findings suggest a link between spin dynamics and superconductivity, and the technique can potentially be applied to investigate other low-dimensional materials with fragile superconducting properties.
View Article and Find Full Text PDF

Characterizing the Areal Extent of PFAS Contamination in Fish Species Downgradient of AFFF Source Zones.

Environ Sci Technol

October 2024

Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.

Most monitoring programs next to large per- and polyfluoroalkyl substances (PFAS) sources focus on drinking water contamination near source zones. However, less is understood about how these sources affect downgradient hydrological systems and food webs. Here, we report paired PFAS measurements in water, sediment, and aquatic biota along a hydrological gradient away from source zones contaminated by the use of legacy aqueous film-forming foam (AFFF) manufactured using electrochemical fluorination.

View Article and Find Full Text PDF
Article Synopsis
  • Epidemiologic studies suggest that exposure to per- and polyfluoroalkyl substances (PFAS) can negatively impact the immune system, potentially worsening COVID-19 outcomes.
  • This research analyzes the link between PFAS contamination in U.S. community water systems and COVID-19 mortality using data from 5371 community water systems in 621 counties.
  • Results show that PFAS contamination levels over 5 ng/L and above the reporting limits significantly correlate with increased COVID-19 mortality rates by approximately 12-13%, highlighting the need for better water regulation and monitoring.
View Article and Find Full Text PDF

Development and Evaluation of Aquatic and Terrestrial Food Web Bioaccumulation Models for Per- and Polyfluoroalkyl Substances.

Environ Sci Technol

October 2024

School of Resource & Environmental Management, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.

There is a need for reliable models to predict the food web bioaccumulation and assess ecological and human health risks of per- and polyfluoroalkyl substances (PFAS). This present study presents (i) the development of novel mechanistic aquatic and terrestrial food web bioaccumulation models for PFAS and (ii) an evaluation of model performance using available laboratory and field data. Model predictions of laboratory-measured bioconcentration factors and field-based bioaccumulation factors of PFAS in fish were in good agreement with observed data as measured by the mean model bias (MB), representing systematic over- or under-estimation and the standard deviation of the MB, representing general uncertainty.

View Article and Find Full Text PDF
Article Synopsis
  • Robots that closely interact with people, like exoskeletons and medical devices, are set to improve our lives significantly, but their design is challenging due to human complexity and unpredictable responses.
  • A new strategy called human-in-the-loop optimization helps overcome these challenges by tailoring device features to enhance user performance based on specific needs and contexts.
  • This approach not only improves human-robot collaboration in research but also presents opportunities for developing new optimization techniques, ultimately aiming to create devices that better the human experience.
View Article and Find Full Text PDF

Drugs that induce reversible slowing of metabolic and physiological processes would have great value for organ preservation, especially for organs with high susceptibility to hypoxia-reperfusion injury, such as the heart. Using whole-organism screening of metabolism, mobility, and development in , we identified an existing drug, SNC80, that rapidly and reversibly slows biochemical and metabolic activities while preserving cell and tissue viability. Although SNC80 was developed as a delta opioid receptor activator, we discovered that its ability to slow metabolism is independent of its opioid modulating activity as a novel SNC80 analog (WB3) with almost 1000 times less delta opioid receptor binding activity is equally active.

View Article and Find Full Text PDF

Cross-cutting studies of per- and polyfluorinated alkyl substances (PFAS) in Arctic wildlife and humans.

Sci Total Environ

December 2024

The National Hospital of the Faroe Islands, Department of Research, Sigmundargøta 5, FO-100 Torshavn, The Faroe Islands; University of the Faroe Islands, Center of Health Science, Torshavn, The Faroe Islands. Electronic address:

This cross-cutting review focuses on the presence and impacts of per- and polyfluoroalkyl substances (PFAS) in the Arctic. Several PFAS undergo long-range transport via atmospheric (volatile polyfluorinated compounds) and oceanic pathways (perfluorinated alkyl acids, PFAAs), causing widespread contamination of the Arctic. Beyond targeting a few well-known PFAS, applying sum parameters, suspect and non-targeted screening are promising approaches to elucidate predominant sources, transport, and pathways of PFAS in the Arctic environment, wildlife, and humans, and establish their time-trends.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are a novel class of crystalline porous materials, consisting of metal ions and organic linkers. These hybrid materials possess exceptional porosity and specific surface area, which have recently garnered significant interest due to their potential applications in gas separation and storage, energy storage, biomedical imaging, and drug delivery. As MOFs are being explored for biomedical applications, it is essential to comprehensively assess their toxicity.

View Article and Find Full Text PDF

Hierarchically structured supraparticles can be produced by drying droplets of colloidal suspensions. Using binary suspensions provides degrees of structural and functional control beyond those possible for single components, while remaining tractable for fundamental mechanistic studies. Here, we implement evaporative co-assembly of two distinct particle types - 'large' polystyrene microparticles and 'small' inorganic oxide nanoparticles (silica, titania, zirconia, or ceria) - dried on superhydrophobic surfaces to produce bowl-shaped supraparticles.

View Article and Find Full Text PDF