68 results match your criteria: "Harima Institute at SPring-8[Affiliation]"

Understanding the transport and inhibition mechanisms of substrates by P-glycoprotein (P-gp) is one of the important approaches in addressing multidrug resistance (MDR). In this study, we evaluated a variety of rhodamine derivatives as potential P-gp inhibitors targeting CmABCB1, a P-gp homologue, with a focus on their ATPase activity. Notably, a Q-rhodamine derivative with an ,'-dimethoxybenzyl ester moiety (Rh-DMB) demonstrated superior affinity and inhibitory activity, which was further confirmed by a drug susceptibility assay in yeast strains expressing CmABCB1.

View Article and Find Full Text PDF

ABCB1, also known as P-glycoprotein, is an essential component of many physiological barriers and extrudes a variety of hydrophobic chemicals out of the cell. Structures of ABCB1 provided insights into the structural changes that occur upon ATP binding and the characteristic architecture of the substrate binding site. Yet, the structure-function relationship between substrate binding and transporting still remains largely obscured because there is no robust method for accurately measuring substrate binding constants.

View Article and Find Full Text PDF

CmABCB1 is a homologue of human P-glycoprotein, which extrudes various substrates by iterative cycles of conformational changes between the inward- and outward-facing states. Comparison of the inward- and outward-facing structures of CmABCB1 suggested that pivotal joints in the transmembrane domain regulate the tilt of transmembrane helices. Transmembrane helix 1 (TM1) forms a tight helix-helix contact with TM3 at the TM1-3 joint.

View Article and Find Full Text PDF

Inward- and outward-facing X-ray crystal structures of homodimeric P-glycoprotein CmABCB1.

Nat Commun

January 2019

Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.

P-glycoprotein extrudes a large variety of xenobiotics from the cell, thereby protecting tissues from their toxic effects. The machinery underlying unidirectional multidrug pumping remains unknown, largely due to the lack of high-resolution structural information regarding the alternate conformational states of the molecule. Here we report a pair of structures of homodimeric P-glycoprotein: an outward-facing conformational state with bound nucleotide and an inward-facing apo state, at resolutions of 1.

View Article and Find Full Text PDF

Insight into the transition between the open and closed conformations of Thermus thermophilus carboxypeptidase.

Biochem Biophys Res Commun

March 2017

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan. Electronic address:

Carboxypeptidase cleaves the C-terminal amino acid residue from proteins and peptides. Here, we report the functional and structural characterizations of carboxypeptidase belonging to the M32 family from the thermophilic bacterium Thermus thermophilus HB8 (TthCP). TthCP exhibits a relatively broad specificity for both hydrophilic (neutral and basic) and hydrophobic (aliphatic and aromatic) residues at the C-terminus and shows optimal activity in the temperature range of 75-80 °C and in the pH range of 6.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulations of proteins provide important information to understand their functional mechanisms, which are, however, likely to be hidden behind their complicated motions with a wide range of spatial and temporal scales. A straightforward and intuitive analysis of protein dynamics observed in MD simulation trajectories is therefore of growing significance with the large increase in both the simulation time and system size. In this study, we propose a novel description of protein motions based on the hierarchical clustering of fluctuations in the inter-atomic distances calculated from an MD trajectory, which constructs a single tree diagram, named a "Motion Tree", to determine a set of rigid-domain pairs hierarchically along with associated inter-domain fluctuations.

View Article and Find Full Text PDF

The Nepenthes species are carnivorous plants that have evolved a specialized leaf organ, the 'pitcher', to attract, capture, and digest insects. The digested insects provide nutrients for growth, allowing these plants to grow even in poor soil. Several proteins have been identified in the pitcher fluid, including aspartic proteases (nepenthesin I and II) and pathogenesis-related (PR) proteins (β-1,3-glucanase, class IV chitinase, and thaumatin-like protein).

View Article and Find Full Text PDF

Polymeric structures and dynamic properties of the bacterial actin AlfA.

J Mol Biol

April 2010

ERATO Actin Filament Dynamics Project, Japan Science and Technology Corporation, c/o RIKEN Harima Institute at Spring 8, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.

AlfA is a recently discovered DNA segregation protein from Bacillus subtilis that is distantly related to actin and the bacterial actin homologues ParM and MreB. Here we show that AlfA mostly forms helical 7/3 filaments, with a repeat of about 180 A, that are arranged in three-dimensional bundles. Other polymorphic structures in the form of two-dimensional rafts or paracrystalline nets were also observed.

View Article and Find Full Text PDF

Suprastructures and dynamic properties of Mycobacterium tuberculosis FtsZ.

J Biol Chem

April 2010

ERATO Actin Filament Dynamics Project, Japan Science and Technology Corporation, RIKEN Harima Institute at Spring 8, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.

Tuberculosis causes the most death in humans by any bacterium. Drug targeting of bacterial cytoskeletal proteins requires detailed knowledge of the various filamentous suprastructures and dynamic properties. Here, we have investigated by high resolution electron microscopy the assembly of cell division protein and microtubule homolog FtsZ from Mycobacterium tuberculosis (MtbFtsZ) in vitro in the presence of various monovalent salts, crowding agents and polycations.

View Article and Find Full Text PDF

Type II plasmid partition systems utilize ParM NTPases in coordination with a centromere-binding protein called ParR to mediate accurate DNA segregation, a process critical for plasmid retention. The Staphylococcus aureus pSK41 plasmid is a medically important plasmid that confers resistance to multiple antibiotics, disinfectants, and antiseptics. In the first step of partition, the pSK41 ParR binds its DNA centromere to form a superhelical partition complex that recruits ParM, which then mediates plasmid separation.

View Article and Find Full Text PDF

Molecular mechanism of bundle formation by the bacterial actin ParM.

Biochem Biophys Res Commun

January 2010

ERATO Actin Filament Dynamics Project, Japan Science and Technology Corporation, RIKEN Harima Institute at Spring 8, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.

The actin homolog ParM plays a microtubule-like role in segregating DNA prior to bacterial cell division. Fluorescence and cryo-electron microscopy have shown that ParM forms filament bundles between separating DNA plasmids in vivo. Given the lack of ParM bundling proteins it remains unknown how ParM bundles form at the molecular level.

View Article and Find Full Text PDF

Protofilament formation of ParM mutants.

J Mol Biol

May 2009

ERATO Actin Filament Dynamics Project, Japan Science and Technology Corporation, c/o RIKEN Harima Institute at Spring 8, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.

ParM, an actin homolog, forms left-handed two-start helical filaments that segregate DNA in bacteria prior to cell division. Our recent atomic model obtained from electron microscopy (EM) reconstructions of negatively stained ParM filaments implied that two salt bridges (Glu35-Lys258 and Asp63-Arg262) may be key inter-filament contacts that stabilize the left-handed ParM helix. We made mutations of these amino acids and probed the inter-strand interface of our model experimentally by EM and X-ray fiber diffraction.

View Article and Find Full Text PDF

Multidrug resistance protein MDR1 (P-glycoprotein/ABCB1) is an ATP-dependent efflux pump for various cytotoxic agents, and is implicated in the resistance of human tumors to chemotherapeutic drugs. To achieve the three-dimensional structural analysis for its mechanistic implications, large amounts of high-quality and homogeneous MDR1 protein are essential. Here we report a cost-effective method for large-scale expression of human MDR1 using a baculovirus/insect expressSF+ cell system and an alterative purification method to maintain MDR1 in a monodispersed state.

View Article and Find Full Text PDF

FtsZ condensates: an in vitro electron microscopy study.

Biopolymers

May 2009

ERATO Actin Filament Dynamics Project, Japan Science and Technology Corporation, c/o RIKEN Harima Institute at Spring 8, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.

In vivo cell division protein FtsZ from E. coli forms rings and spirals which have only been observed by low resolution light microscopy. We show that these suprastructures are likely formed by molecular crowding which is a predominant factor in prokaryotic cells and enhances the weak lateral bonds between proto-filaments.

View Article and Find Full Text PDF

Single molecule polymerization, annealing and bundling dynamics of SipA induced actin filaments.

Cell Motil Cytoskeleton

February 2008

ERATO Actin Filament Dynamics Project, Japan Science and Technology Corporation, c/o RIKEN Harima Institute at Spring 8, Kouto, Sayo, Hyogo 679-5148, Japan.

Salmonella bacteria cause more than three million deaths each year. They hijack cells and inject among other proteins SipA via a "molecular syringe" into the cell, which can tether actin subunits in opposing strands to form mechanically stabilized filaments which rapidly reshape the cells surface into extended ruffles, leading to bacterial internalization. Exactly how these ruffles form at a single filament level remains unknown.

View Article and Find Full Text PDF

Thiol reactivity as a sensor of rotation of the converter in myosin.

Biochem Biophys Res Commun

April 2008

Exploratory Research for Advanced Technology "Actin-Filament Dynamics" Project, Japan Science and Technology Agency, c/o RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.

Smooth muscle myosin has two reactive thiols located near the C-terminal region of its motor domain, the "converter", which rotates by approximately 70 degrees upon the transition from the "nucleotide-free" state to the "pre-power stroke" state. The incorporation rates of a thiol reagent, 5-(((2-iodoacetyl)amino)ethyl)aminonaphthalene-1-sulfonic acid (IAEDANS), into these thiols were greatly altered by adding ATP or changing the myosin conformation. Comparisons of the myosin structures in the pre-power stroke state and the nucleotide-free state explained why the reactivity of both thiols is especially sensitive to a conformational change around the converter, and thus can be used as a sensor of the rotation of the converter.

View Article and Find Full Text PDF

Structural insights of HutP-mediated regulation of transcription of the hut operon in Bacillus subtilis.

Biophys Chem

June 2007

Biometals Laboratory and Advanced Protein Crystallography Research Group, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.

Regulating gene expression directly at the mRNA level represents a novel approach to control cellular processes in all organisms. In this respect, an RNA-binding protein plays a key role by targeting the mRNA to regulate the expression by attenuation or an anti-termination mechanism only in the presence of their cognate ligands. Although many proteins are known to use these mechanisms to regulate the gene expression, no structural insights have been revealed to date to explain how these proteins trigger the conformation for the recognition of RNA.

View Article and Find Full Text PDF

Crowded surfaces change annealing dynamics of actin filaments.

J Mol Biol

April 2007

ERATO Actin Filament Dynamics Project, Japan Science and Technology Corporation, c/o RIKEN Harima Institute at Spring 8, Kouto, Sayo, Hyogo, 679-5148, Japan.

Changes in cell shape that occur in many cellular processes are thought to arise from polymerization of actin filaments near the cell membrane. End-to-end annealing of actin filaments is believed to play only a minor role in this process, as annealing in solution was shown to be a slow process, which is not typical for a bimolecular reaction, its rate constant decreasing over time, being inversely proportional to the filament length. Furthermore, in vitro studies on f-actin solutions were found to display an exponential steady-state length distribution.

View Article and Find Full Text PDF

Nitrilotriacetate (NTA)-mediated capture of a histidine-tagged protein is widely used as an easy and simple method to reversibly immobilize the protein onto a sensor chip for surface plasmon resonance (SPR). However, in spite of its advantages, the NTA-capturing strategy is rarely employed for ligand screening experiments using SPR, because it was thought to cause substantial errors in binding responses, due to the inevitable protein dissociation during the monitoring period. In this study, as demonstrated in a ligand screening for the histidine-tagged SH3 domain of the human phosphatidylinositol 3-kinase p85alpha subunit, false responses after adhesion of undesirable compounds to a target protein could be minimized with the NTA strategy, while binding responses of a positive control peptide still stayed within a 1%-deviation against the theoretical binding capacity.

View Article and Find Full Text PDF

Concerning the dynamic instability of actin homolog ParM.

Biochem Biophys Res Commun

February 2007

ERATO Actin Filament Dynamics Project, Japan Science and Technology Corporation, c/o RIKEN Harima Institute at Spring 8, Kouto, Sayo, Hyogo 679-5148, Japan.

Using in vitro TIRF- and electron-microscopy, we reinvestigated the dynamics of native ParM, a prokaryotic DNA segregation protein and actin homolog. In contrast to a previous study, which used a cysteine ParM mutant, we find that the polymerization process of wild type ATP-ParM filaments consists of a polymerization phase and a subsequent steady state phase, which is dynamically unstable, like that of microtubules. We find that the apparent bidirectional polymerization of ParM, is not due to the intrinsic nature of this filament, but results from ParM forming randomly oriented bundles in the presence of crowding agents.

View Article and Find Full Text PDF

CFBP is a novel tyrosine-phosphorylated protein that might function as a regulator of CIN85/CD2AP.

J Biol Chem

September 2006

Institute for Enzyme Research, University of Tokushima, Tokushima 770-8503, Japan and Harima Institute at SPring-8, RIKEN, Hyogo 679-5148, Japan.

To decipher the global network of the epidermal growth factor (EGF) receptor-mediated signaling pathway, a large scale proteomic analysis of tyrosine-phosphorylated proteins was conducted. Here, we focus on characterizing a novel protein, CFBP (CIN85/CD2AP family binding protein), identified in the study. CFBP was found to be phosphorylated at tyrosine 204 upon EGF stimulation, and the CIN85/CD2AP family was identified as a binding partner.

View Article and Find Full Text PDF

The ligand-mediated down-regulation of the growth factor receptors is preceded by the involvement of various other factors. In particular, a ubiquitin ligase, Cbl, plays a central role in this event. Several candidates that have potential effects on the negative control of the epidermal growth factor (EGF) receptor have now been identified by our recent studies in phospho-proteomics.

View Article and Find Full Text PDF

Structural basis for the spectral difference in luciferase bioluminescence.

Nature

March 2006

Kinetic Crystallography Research Team, Membrane Dynamics Research Group, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan.

Fireflies communicate with each other by emitting yellow-green to yellow-orange brilliant light. The bioluminescence reaction, which uses luciferin, Mg-ATP and molecular oxygen to yield an electronically excited oxyluciferin species, is carried out by the enzyme luciferase. Visible light is emitted during relaxation of excited oxyluciferin to its ground state.

View Article and Find Full Text PDF

GTPases are involved in diverse cellular functions including cell proliferation, cytoskeleton organization and intracellular traffic. The putative GTPase PH0525 from Pyrococcus horikoshii OT3 has been overexpressed in Escherichia coli and purified. Two distinct crystal forms were grown by the microbatch method at 291 K using a very high protein concentration (80 mg ml(-1)).

View Article and Find Full Text PDF

Biotin-protein ligase is an enzyme that catalyzes the ATP-dependent biotinylation of a specific lysine residue in acetyl-CoA carboxylase. The biotin-protein ligase from Pyrococcus horikoshii OT3 has been cloned, overexpressed and purified. Crystallization was performed by the microbatch method or the vapour-diffusion method using PEG 2000 as a precipitant at 295 K.

View Article and Find Full Text PDF