441 results match your criteria: "Hamon Center for Regenerative Science and Medicine.[Affiliation]"

An aggregation of human embryonic and trophoblast stem cells reveals the role of trophectoderm on epiblast differentiation.

Cell Prolif

May 2023

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

The interactions between extra-embryonic tissues and embryonic tissues are crucial to ensure proper early embryo development. However, the understanding of the crosstalk between the embryonic tissues and extra-embryonic tissues is lacking, mainly due to ethical restrictions, difficulties in obtaining natural human embryos, and lack of appropriate in vitro models. Here by aggregating human embryonic stem cells (hESCs) with human trophoblast stem cells (hTSCs), we revealed the hESCs robustly self-organized into a unique asymmetric structure which the primitive streak (PS) like cells exclusively distributed at the distal end to the TS-compartment, and morphologically flattened cells, presumed to be the extra-embryonic mesoderm cells (EXMC) like cells, were induced at the proximal end to hTSCs.

View Article and Find Full Text PDF

Ex utero monkey embryogenesis from blastocyst to early organogenesis.

Cell

May 2023

State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China. Electronic address:

The third and fourth weeks of gestation in primates are marked by several developmental milestones, including gastrulation and the formation of organ primordia. However, our understanding of this period is limited due to restricted access to in vivo embryos. To address this gap, we developed an embedded 3D culture system that allows for the extended ex utero culture of cynomolgus monkey embryos for up to 25 days post-fertilization.

View Article and Find Full Text PDF

Ectopic PLAG1 induces muscular dystrophy in the mouse.

Biochem Biophys Res Commun

July 2023

Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:

Even though various genetic mutations have been identified in muscular dystrophies (MD), there is still a need to understand the biology of MD in the absence of known mutations. Here we reported a new mouse model of MD driven by ectopic expression of PLAG1. This gene encodes a developmentally regulated transcription factor known to be expressed in developing skeletal muscle, and implicated as an oncogene in certain cancers including rhabdomyosarcoma (RMS), an aggressive soft tissue sarcoma composed of myoblast-like cells.

View Article and Find Full Text PDF

Effective therapeutics is much needed for amyotrophic lateral sclerosis (ALS), an adult-onset neurodegenerative disease mainly affecting motor neurons. By screening chemical compounds in human patient-derived and aging-relevant motor neurons, we identify a neuroprotective compound and show that MAP4Ks may serve as therapeutic targets for treating ALS. The lead compound broadly improves survival and function of motor neurons directly converted from human ALS patients.

View Article and Find Full Text PDF

Establishment of bovine trophoblast stem cells.

Cell Rep

May 2023

School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA; Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA. Electronic address:

Here, we report that a chemical cocktail (LCDM: leukemia inhibitory factor [LIF], CHIR99021, dimethinedene maleate [DiM], minocycline hydrochloride), previously developed for extended pluripotent stem cells (EPSCs) in mice and humans, enables de novo derivation and long-term culture of bovine trophoblast stem cells (TSCs). Bovine TSCs retain developmental potency to differentiate into mature trophoblast cells and exhibit transcriptomic and epigenetic (chromatin accessibility and DNA methylome) features characteristic of trophectoderm cells from early bovine embryos. The bovine TSCs established in this study will provide a model to study bovine placentation and early pregnancy failure.

View Article and Find Full Text PDF

Bovine blastocyst-like structures derived from stem cell cultures.

Cell Stem Cell

May 2023

Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:

Understanding the mechanisms of blastocyst formation and implantation is critical for improving farm animal reproduction but is hampered by a limited supply of embryos. Here, we developed an efficient method to generate bovine blastocyst-like structures (termed blastoids) via assembling bovine trophoblast stem cells and expanded potential stem cells. Bovine blastoids resemble blastocysts in morphology, cell composition, single-cell transcriptomes, in vitro growth, and the ability to elicit maternal recognition of pregnancy following transfer to recipient cows.

View Article and Find Full Text PDF

Virus-like particles (VLPs) are engineered nanoparticles that mimic the properties of viruses-like high tolerance to heat and proteases-but lack a viral genome, making them non-infectious. They are easily modified chemically and genetically, making them useful in drug delivery, enhancing vaccine efficacy, gene delivery, and cancer immunotherapy. One such VLP is Qβ, which has an affinity towards an RNA hairpin structure found in its viral RNA that drives the self-assembly of the capsid.

View Article and Find Full Text PDF

Neurofibromatosis type 1 (NF1) is one of the most common tumor-predisposing genetic disorders. Neurofibromas are NF1-associated benign tumors. A hallmark feature of neurofibromas is an abundant collagen-rich extracellular matrix (ECM) that constitutes more than 50% of the tumor dry weight.

View Article and Find Full Text PDF

Rhabdomyosarcoma (RMS) is a common soft tissue sarcoma in children that resembles developing skeletal muscle. Unlike normal muscle cells, RMS cells fail to differentiate despite expression of the myogenic determination protein MYOD. The TWIST2 transcription factor is frequently overexpressed in fusion-negative RMS (FN-RMS).

View Article and Find Full Text PDF

Enhancers orchestrate gene expression programs that drive multicellular development and lineage commitment. Thus, genetic variants at enhancers are thought to contribute to developmental diseases by altering cell fate commitment. However, while many variant-containing enhancers have been identified, studies to endogenously test the impact of these enhancers on lineage commitment have been lacking.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a debilitating genetic disorder that results in progressive muscle degeneration and premature death. DMD is caused by mutations in the gene encoding dystrophin protein, a membrane-associated protein required for maintenance of muscle structure and function. Although the genetic mutations causing the disease are well known, no curative therapies have been developed to date.

View Article and Find Full Text PDF

Quiescent stem cells are activated in response to a mechanical or chemical injury to their tissue niche. Activated cells rapidly generate a heterogeneous progenitor population that regenerates the damaged tissues. While the transcriptional cadence that generates heterogeneity is known, the metabolic pathways influencing the transcriptional machinery to establish a heterogeneous progenitor population remains unclear.

View Article and Find Full Text PDF

Extended reality for biomedicine.

Nat Rev Methods Primers

March 2023

Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, United States.

Extended reality (XR) refers to an umbrella of methods that allows users to be immersed in a three-dimensional (3D) or a 4D (spatial + temporal) virtual environment to different extents, including virtual reality (VR), augmented reality (AR), and mixed reality (MR). While VR allows a user to be fully immersed in a virtual environment, AR and MR overlay virtual objects over the real physical world. The immersion and interaction of XR provide unparalleled opportunities to extend our world beyond conventional lifestyles.

View Article and Find Full Text PDF

The human nervous system exhibits limited regenerative capabilities following damage to the central nervous system (CNS), leading to a scarcity of effective treatments for nerve function recovery. In contrast, zebrafish demonstrate remarkable regenerative abilities, making them an ideal model for studying the modulation of inflammatory processes after injury. Such research holds significant translational potential to enhance our understanding of recovery from damage and disease.

View Article and Find Full Text PDF

Biomolecular condensates participate in the regulation of gene transcription, yet the relationship between nuclear condensation and transcriptional activation remains elusive. Here, we devised a biotinylated CRISPR-dCas9-based optogenetic method, light-activated macromolecular phase separation (LAMPS), to enable inducible formation, affinity purification, and multiomic dissection of nuclear condensates at the targeted genomic loci. LAMPS-induced condensation at enhancers and promoters activates endogenous gene transcription by chromatin reconfiguration, causing increased chromatin accessibility and de novo formation of long-range chromosomal loops.

View Article and Find Full Text PDF

Reprogramming of cardiac cell fate as a therapeutic strategy for ischemic heart disease.

J Mol Cell Cardiol

June 2023

Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.

Direct reprogramming of resident cardiac fibroblasts to induced cardiomyocytes is an attractive therapeutic strategy to restore function and remuscularize the injured heart. The cardiac transcription factors Gata4, Mef2c, and Tbx5 have been the mainstay of direct cardiac reprogramming strategies for the past decade. Yet, recent discoveries have identified alternative epigenetic factors capable of reprogramming human cells in the absence of these canonical factors.

View Article and Find Full Text PDF

New AAV tools fail to detect Neurod1-mediated neuronal conversion of Müller glia and astrocytes in vivo.

EBioMedicine

April 2023

Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Electronic address:

Background: Reprogramming resident glial cells to convert them into neurons in vivo represents a potential therapeutic strategy that could replenish lost neurons, repair damaged neural circuits, and restore function. AAV (adeno-associated virus)-based expression systems are powerful tools for in vivo gene delivery in glia-to-neuron reprogramming, however, recent studies show that AAV-based gene delivery of Neurod1 into the mouse brain can cause severe leaky expression into endogenous neurons leading to misinterpretation of glia-to-neuron conversion.

Methods: AAV-based delivery systems were modified for improved in vivo delivery of Neurod1, Math5, Ascl1, and Neurog2 in the adult mouse retina and brain.

View Article and Find Full Text PDF
Article Synopsis
  • Structural variants (SVs), particularly enhancer hijacking, can change chromatin structures and activate oncogenes in human cancers, but the mechanisms behind these effects are not well understood.
  • A new multimodal approach combining genome analysis and other techniques helped identify both known and novel pathogenic SVs, including a specific translocation linked to pediatric leukemia that activates the TLX3 gene.
  • The study found that the interaction between genetic changes (like SVs) and chromatin states affects gene expression, suggesting that understanding these interactions might lead to new treatment strategies for leukemia.
View Article and Find Full Text PDF

Interspecies chimera formation with human pluripotent stem cells (PSCs) holds great promise to generate humanized animal models and provide donor organs for transplant. However, the approach is currently limited by low levels of human cells ultimately represented in chimeric embryos. Different strategies have been developed to improve chimerism by genetically editing donor human PSCs.

View Article and Find Full Text PDF

Faithful embryogenesis requires precise coordination between embryonic and extraembryonic tissues. Although stem cells from embryonic and extraembryonic origins have been generated for several mammalian species(Bogliotti et al., 2018; Choi et al.

View Article and Find Full Text PDF

Protocol for inducing cellular ablation in the mouse atrioventricular conduction system.

STAR Protoc

March 2023

Department of Internal Medicine, Cardiology Division, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA; McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA. Electronic address:

Damage to the atrioventricular conduction system (AVCS), the main electrical connection between the atrial and ventricular chambers, can result in a variety of cardiac conduction disorders. Here, we provide a protocol for selective damage of the mouse AVCS to study its response during injury. We describe tamoxifen-induced cellular ablation, detection of AV block through electrocardiography, and quantification of histological and immunofluorescence markers to analyze the AVCS.

View Article and Find Full Text PDF

Regulation of mTORC1 by the Rag GTPases.

Biochem Soc Trans

April 2023

Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A.

The Rag GTPases are an evolutionarily conserved family that play a crucial role in amino acid sensing by the mammalian target of rapamycin complex 1 (mTORC1). mTORC1 is often referred to as the master regulator of cell growth. mTORC1 hyperactivation is observed in multiple diseases such as cancer, obesity, metabolic disorders, and neurodegeneration.

View Article and Find Full Text PDF

Whole Central and Peripheral Nervous System Mice Dissection.

J Vis Exp

February 2023

Department of Biochemistry and Functional Genomics, Université de Sherbrooke; Centre de Recherche du Centre Hospitalier de Universitaire de Sherbrooke, Université de Sherbrooke;

Animal models represent the workhorse of the neuroscience field. Despite this, today, there is still no step-by-step protocol to dissect a complete rodent nervous system, nor is there a complete schematic representing it that is freely available. Only methods to harvest the brain, the spinal cord, a specific dorsal root ganglion, and the sciatic nerve (separately) are available.

View Article and Find Full Text PDF

Subcellular localization of messenger RNA (mRNA) is a widespread phenomenon that can impact the regulation and function of the encoded protein. In nonneuronal cells, specific mRNAs localize to cell protrusions, and proper mRNA localization is required for cell migration. However, the mechanisms by which mRNA localization regulates protein function in this setting remain unclear.

View Article and Find Full Text PDF