1,191 results match your criteria: "Hamburg University of Technology.[Affiliation]"

The application of supervised models to clinical screening tasks is challenging due to the need for annotated data for each considered pathology. Unsupervised Anomaly Detection (UAD) is an alternative approach that aims to identify any anomaly as an outlier from a healthy training distribution. A prevalent strategy for UAD in brain MRI involves using generative models to learn the reconstruction of healthy brain anatomy for a given input image.

View Article and Find Full Text PDF

We present a built-in physics neural network architecture, known as inelastic Constitutive Artificial Neural Network (iCANN), to discover the inelastic phenomenon of tensional homeostasis. In this course, identifying the optimal model and material parameters to accurately capture the macroscopic behavior of inelastic materials can only be accomplished with significant expertise, is often time-consuming, and prone to error, regardless of the specific inelastic phenomenon. To address this challenge, built-in physics machine learning algorithms offer significant potential.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) have emerged as promising solvents for biocatalysis. While their impact on enzyme solvation and stabilization has been studied for several enzyme classes, their role in substrate binding is yet to be investigated. Herein, molecular dynamics (MD) simulations of horse-liver alcohol dehydrogenase (HLADH) are performed in choline chloride-ethylene glycol (ChCl-EG) and choline chloride-glycerol (ChCl-Gly) at varying water concentrations.

View Article and Find Full Text PDF

Background: Bulbar function is frequently impaired in patients with spinal muscular atrophy (SMA). Although extremely important for the patient's quality of life, it is difficult to address therapeutically. Due to bulbar dysfunction, maximum mouth opening (MMO) is suspected to be reduced in children with SMA.

View Article and Find Full Text PDF

Guaranteed efficient energy estimation of quantum many-body Hamiltonians using ShadowGrouping.

Nat Commun

January 2025

Institute for Quantum Inspired and Quantum Optimization, Hamburg University of Technology, Hamburg, Germany.

Estimation of the energy of quantum many-body systems is a paradigmatic task in various research fields. In particular, efficient energy estimation may be crucial in achieving a quantum advantage for a practically relevant problem. For instance, the measurement effort poses a critical bottleneck for variational quantum algorithms.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on a microorganism used for producing 1,3-propanediol and butanol, addressing its lack of genetic tools for enhancing yields.
  • A new method leveraging CRISPR-Cas technology was developed for making multiple gene modifications simultaneously, leading to significant improvements in metabolic performance.
  • Results showed a decrease in glycerol consumption and an increase in 1,3-PDO yield, along with the unexpected production of 2,3-butanediol, expanding the genetic engineering capabilities for the microorganism.
View Article and Find Full Text PDF

Coherent phase transformations in interstitial solid solutions or intercalation compounds with a miscibility gap are of practical relevance for energy storage materials and specifically for metal hydride or lithium-ion compound nanoparticles. Different conclusions on the size-dependence of the transformation conditions are reached by modeling or theory focusing on the impact of either one (internal, solid-state-) critical-point wetting of the nanoparticle surface or coherency constraints from solute-saturated surface layers. We report a hybrid numerical approach, combining atomistic grand canonical Monte Carlo simulation with a continuum mechanics analysis of coherency stress and modeling simultaneously wetting and mechanical constraints.

View Article and Find Full Text PDF

Background: Health care innovation faces significant challenges, including system inertia and diverse stakeholders, making regulated market access pathways essential for facilitating the adoption of new technologies. The German Digital Healthcare Act, introduced in 2019, offers a model by enabling digital health applications (DiGAs) to be reimbursed by statutory health insurance, improving market access and patient empowerment. However, the factors influencing the success of these pathways in driving innovation remain unclear.

View Article and Find Full Text PDF

Gas-phase near-edge X-ray absorption mass spectrometry (NEXAMS) was employed at the carbon and oxygen K-edges to probe the influence of a single water molecule on the protonated phosphotyrosine molecule. The results of the photodissociation experiments revealed that the water molecule forms two bonds, with the phosphate group and another chemical group. By comparing the NEXAMS spectra at the carbon and oxygen K-edges with density functional theory calculations, we attributed the electronic transitions responsible for the observed resonances, especially the transitions due to the presence of the water molecule.

View Article and Find Full Text PDF

Objective: Automatic segmentation and detection of vestibular schwannoma (VS) in MRI by deep learning is an upcoming topic. However, deep learning faces generalization challenges due to tumor variability even though measurements and segmentation of VS are essential for growth monitoring and treatment planning. Therefore, we introduce a novel model combining two Convolutional Neural Network (CNN) models for the detection of VS by deep learning aiming to improve performance of automatic segmentation.

View Article and Find Full Text PDF

Autonomous tuning of particle accelerators is an active and challenging research field with the goal of enabling advanced accelerator technologies and cutting-edge high-impact applications, such as physics discovery, cancer research, and material sciences. A challenge with autonomous accelerator tuning remains that the most capable algorithms require experts in optimization and machine learning to implement them for every new tuning task. Here, we propose the use of large language models (LLMs) to tune particle accelerators.

View Article and Find Full Text PDF

This study explores the innovative potential of native lignin as a sustainable biopolyol for synthesizing polyurethane aerogels with variable microstructures, significant specific surface areas, and high mechanical stability. Three types of lignin-Organosolv, Aquasolv, and Soda lignin-were evaluated based on structural characteristics, Klason lignin content, and particle size, with Organosolv lignin being identified as the optimal candidate. The microstructure of lignin polyurethane samples was adjustable by solvent choice: Gelation in DMSO and pyridine, with high affinity to lignin, resulted in dense materials with low specific surface areas, while the use of the low-affinity solvent e.

View Article and Find Full Text PDF

Printing inks, composed of binders, pigments, and additives, are essential components in plastic packaging but complicate recycling due to plastic contamination and degradation. While polyolefins are resistant to hydrolytic degradation, moisture generated from upstream cleaning processes, which is often ignored, can accelerate the degradation of ink binders, affecting the recyclate quality. This study has examined the impact of 3 wt.

View Article and Find Full Text PDF

Efficiency and process development for microbial biomass production using oxic bioelectrosynthesis.

Trends Biotechnol

December 2024

Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstraße 12 (F), 21073 Hamburg, Germany. Electronic address:

Autotrophic microbial electrosynthesis (MES) processes are mainly based on organisms that rely on carbon dioxide (CO) as an electron acceptor and typically have low biomass yields. However, there are few data on the process and efficiencies of oxic MES (OMES). In this study, we used the knallgas bacterium Kyrpidia spormannii to investigate biomass formation and energy efficiency of cathode-dependent growth.

View Article and Find Full Text PDF

Miniature actuators are utilized in various application fields, from robotics to medical devices, where compact dimensions, precise movements, and cost-effectiveness are crucial factors. Particularly for applications like braille displays, there is a critical demand for lightweight, portable, and affordable actuators to integrate into daily life for visually impaired people. However, existing actuation technologies such as electroactive polymers, electrorheological materials, and piezoelectric elements often do not meet the specific requirements of miniature actuators, especially for braille displays.

View Article and Find Full Text PDF

Switchable 3D Photonic Crystals Based on the Insulator-to-Metal Transition in VO.

ACS Appl Mater Interfaces

December 2024

Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany.

Article Synopsis
  • Photonic crystals (PhCs) are optical structures that manipulate light by creating a photonic band gap (PBG) through their dielectric properties, traditionally fixed and static.
  • Recent advancements target switchable PhCs, especially using vanadium dioxide (VO), which changes its state and optical properties near room temperature, allowing for a reversible adjustment of the PBG.
  • This research introduces a fabrication method for 3D switchable VO photonic crystals, demonstrating significant control over PBG at specific wavelengths in the near-infrared region, paving the way for versatile photonic devices that can adapt their functionalities.
View Article and Find Full Text PDF

Background: Heart rate (HR) monitoring is a medical standard to provide information about a patient's health status. In palliative care, relationship and social engagement are crucial therapeutic concepts. For fear of disrupting communication, social contact, and care, continuous HR monitoring is underutilised despite its potential to inform on symptom burden and therapeutic effects.

View Article and Find Full Text PDF

Microbial electrochemical systems offer a sustainable method for the conversion of chemical energy into electrical energy or hydrogen and the production of valuable compounds, contributing to the development of a bio-based economy. This study aimed to enhance the performance of anodic bioelectrochemical systems by improving the current density of Shewanella oneidensis as a biocatalyst through strain modification and medium refinement. The genetic modification, combining the prophage deletion and overexpression of the speC gene, resulted in a 4.

View Article and Find Full Text PDF

Retinal prosthetic devices aim to repair some vision in visually impaired patients by electrically stimulating neural cells in the visual system. Although there have been several notable advancements in the creation of electrically stimulated small dot-like perceptions, a deeper comprehension of the physical properties of phosphenes is still necessary. This study analyzes the influence of two independent electrode array topologies to achieve single-localized stimulation while the retina is electrically stimulated: a two-dimensional (2D) hexagon-shaped array reported in clinical studies and a patented three-dimensional (3D) linear electrode carrier.

View Article and Find Full Text PDF

Recent research has discussed the positive impacts of metal-based nanoparticles (NPs) on bioprocesses producing either hydrogen (H) or methane (CH). The enhancement has been explained by mechanisms such as direct interspecies electron transfer (DIET), metal corrosion, and dissimilatory reduction. Such interactions could induce further benefits, such as controlling oxidation-reduction potential (ORP), mitigating toxicants, promoting enzymatic activity, and altering the microbiome, which have not yet been comprehensively discussed.

View Article and Find Full Text PDF

In focused ion beam (FIB) tomography, a combination of FIB with a scanning electron microscope (SEM) is used for collecting a series of planar images of the microstructure of nanoporous materials. These planar images serve as the basis for reconstructing the three-dimensional microstructure through segmentation algorithms. However, the assumption of a constant distance between consecutively imaged sections is generally invalid due to random variations in the FIB milling process.

View Article and Find Full Text PDF

Machine learning reveals correlations between brain age and mechanics.

Acta Biomater

December 2024

Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany. Electronic address:

Our brain undergoes significant micro- and macroscopic changes throughout its life cycle. It is therefore crucial to understand the effect of aging on the mechanical properties of the brain in order to develop accurate personalized simulations and diagnostic tools. Here we systematically probed the mechanical behavior of n=439 brain tissue samples in tension and compression, in different anatomical regions, for different axon orientations, across five age groups.

View Article and Find Full Text PDF

Information causality was initially proposed as a physical principle aimed at deriving the predictions of quantum mechanics on the type of correlations observed in the Bell experiment. In the same work, information causality was famously shown to imply the Uffink inequality that approximates the set of quantum correlations and rederives Tsirelson's bound of the Clauser-Horne-Shimony-Holt inequality. This result found limited generalizations due to the difficulty of deducing implications of the information causality principle on the set of nonlocal correlations.

View Article and Find Full Text PDF

Redox biocatalysis is an essential pillar of the chemical industry. Yet, the enzymes' nature restricts most reactions to aqueous conditions, where the limited substrate solubility leads to unsustainable diluted biotranformations. Non-aqueous media represent a strategic solution to conduct intensified biocatalytic routes.

View Article and Find Full Text PDF

Constrained mixture models have successfully simulated many cases of growth and remodeling in soft biological tissues. So far, extensions of these models have been proposed to include either intracellular signaling or chemo-mechanical coupling on the organ-scale. However, no version of constrained mixture models currently exists that includes both aspects.

View Article and Find Full Text PDF