4 results match your criteria: "Hamburg University of Technology Denickestrasse[Affiliation]"

An Aldolase-Catalyzed New Metabolic Pathway for the Assimilation of Formaldehyde and Methanol To Synthesize 2-Keto-4-hydroxybutyrate and 1,3-Propanediol in .

ACS Synth Biol

November 2019

Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District , 100029 , Beijing , China.

Formaldehyde (HCHO) is an important intermediate in the metabolism of one-carbon (C1) compounds such as methanol, formate, and methane. The ribulose monophosphate (RuMP) pathway is the most-studied HCHO assimilation route and the 3-hexulose-6-phosphate synthase (Hps) plays an important role for HCHO fixation. In this study, we proposed and selected a pyruvate-dependent aldolase to channel HCHO into 2-keto-4-hydroxybutyrate as an important intermediate for biosynthesis.

View Article and Find Full Text PDF

Microbial electrosynthesis or electro-fermentation in bioelectrochemical systems (BES) have recently received much attention. Here, we demonstrate with the glycerol metabolism by Clostridium pasteurianum that H from in situ water electrolysis, especially in combination with a redox mediator, provides a simple and flexible way for shifting product selectivity and enhancing product yield in the fermentation process. In particular, we report and quantify for the first time strictly different effects of Neutral Red (NR) and the barely studied redox mediator Brilliant Blue (BB) on the growth and product formation of C.

View Article and Find Full Text PDF

Riboswitch, a regulatory part of an mRNA molecule that can specifically bind a metabolite and regulate gene expression, is attractive for engineering biological systems, especially for the control of metabolic fluxes in industrial microorganisms. Here, we demonstrate the use of lysine riboswitch and intracellular l-lysine as a signal to control the competing but essential metabolic by-pathways of lysine biosynthesis. To this end, we first examined the natural lysine riboswitches of Eschericia coli (ECRS) and Bacillus subtilis (BSRS) to control the expression of citrate synthase (gltA) and thus the metabolic flux in the tricarboxylic acid (TCA) cycle in E.

View Article and Find Full Text PDF

Allosteric proteins, which can sense different signals, are interesting biological parts for synthetic biology. In particular, the design of an artificial allosteric enzyme to sense an unnatural signal is both challenging and highly desired, for example, for a precise and dynamical control of fluxes of growth-essential but byproduct pathways in metabolic engineering of industrial microorganisms. In this work, we used homoserine dehydrogenase (HSDH) of Corynebacterium glutamicum, which is naturally allosterically regulated by threonine and isoleucine, as an example to demonstrate the feasibility of reengineering an allosteric enzyme to respond to an unnatural inhibitor L-lysine.

View Article and Find Full Text PDF