811 results match your criteria: "Haikou 570228 PR China; Hainan Institute for Food Control[Affiliation]"

Comprehensive comparison on different wavelength selection methods using several near-infrared spectral datasets with different dimensionalities.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

School of Food Science and Engineering, Hainan University, Haikou 570228 PR China; Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570314 PR China. Electronic address:

NIR spectroscopy is widely used in chemical analysis, agricultural science, food safety, and other fields, but its high dimensionality and data redundancy bring analytical challenges. This study aims to compare the performance of different wavelength selection methods in NIR spectral datasets with different dimensionalities to provide a reference for researchers. The wavelength selection methods in this study were classified into four categories according to their principles, which are partial least squares (PLS) parameter-based methods, intelligent optimization algorithms (IOA)-based methods, model population analysis (MPA)-based methods and wavelength interval selection (WIS) methods.

View Article and Find Full Text PDF

Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a debilitating, incurable, and life-threatening disease that lacks effective therapy. The overexpression of phosphodiesterase 10A (PDE10A) plays a vital role in pulmonary fibrosis (PF). However, the impact of selective PDE10A inhibitors on the tumor growth factor-β (TGF-β)/small mother against decapentaplegic (Smad) signaling pathway remains unclear.

View Article and Find Full Text PDF

Background: Circadian disruptions are increasingly recognized in Alzheimer's disease (AD) patients and may influence disease onset and progression. This study examines how AD pathology affects blood-borne factors that regulate circadian rhythms.

Methods: Eighty-five participants from the Sino Longitudinal Study on Cognitive Decline were enrolled: 35 amyloid-beta negative normal controls (Aβ- NCs), 23 amyloid-beta positive normal controls (Aβ+ NCs), 15 patients with amnestic mild cognitive impairment (aMCI), and 12 with Alzheimer's disease dementia (ADD).

View Article and Find Full Text PDF

Dynamic Methane Emissions from China's Fossil-Fuel and Food Systems: Socioeconomic Drivers and Policy Optimization Strategies.

Environ Sci Technol

January 2025

State Key Laboratory of Marine Resources Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou 570228, China.

In response to the 2023 "Action Plan for Methane Emission Control" in China, which mandates precise methane (CH) emission accounting, we developed a dynamic model to estimate CH emissions from fossil-fuel and food systems in China for the period 1990-2020. We also analyzed their socioeconomic drivers through the Logarithmic Mean Divisia Index (LMDI) model. Our analysis revealed an accelerated emission increase (850.

View Article and Find Full Text PDF

Organic/Inorganic Hybrid Cross-Linked Gel Polymer Electrolyte for Optimizing the Solvation Structure of Lithium Ions.

ACS Appl Mater Interfaces

January 2025

Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials and Energy, Foshan University, Foshan 528000, PR China.

Lithium metal electrodes inevitably lead to the decomposition of the liquid electrolyte and lithium dendrite growth, both of which result in the formation of unstable solid electrolyte intermediates (SEIs). Gel polymer electrolytes (GPEs) are expected to replace liquid electrolytes for optimizing the SEI issues of lithium metal. Herein, a cellulose-based gel electrolyte cross-linked by thiol-modified polyhedral oligomeric silsesquioxane (thiol-modified-POSS) was successfully obtained based on "thiol-ene" click chemistry.

View Article and Find Full Text PDF

In the manipulation of π-conjugated organic polymer, strategic alterations to the polymerization cascade facilitate the integration of donor (D) and acceptor (A) entities within the polymer's backbone. Such control is instrumental in broadening the photoresponse spectrum, enhancing photoinduced charge separation, and augmenting the efficiency of charge transfer processes. The oxygen-containing amino group (-ONH) was innovatively grafted into the polymerization process of the triazine-heptazine ring skeleton, and the -ONH was used as a capping agent to change the chain bonding in the polymerization process, thus a new intramolecular D-A structure was successfully constructed.

View Article and Find Full Text PDF

A novel photoelectrochemical biosensor for sensitive detection of nucleic acids based on recombinase polymerase amplification and 3D-array titania nanorods.

Int J Biol Macromol

January 2025

NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China. Electronic address:

Nucleic acids detection is essential for diagnosing pathogens; however, traditional methods usually face challenges such as low sensitivity, lengthy reaction times, and strict temperature requirements. This study develops a novel photoelectrochemical (PEC) biosensor that integrates recombinase polymerase amplification (RPA) with a 3D-array titania (TiO) nanorods nanorod electrode, addressing the challenge of achieving sensitive detection of RPA-amplified nucleic acids products, thereby enabling earlier and more reliable pathogen detection. The biosensor utilizes a triple-binding mode involving FITC antibodies, target nucleic acids, and an HRP-streptavidin sandwich structure, significantly improving the bio-functionalization of the electrode surface.

View Article and Find Full Text PDF

Supramolecular transparent plastic engineering covalent-and-supramolecular polymerization.

Mater Horiz

January 2025

College of Chemistry and Chemical Engineering, Hunan University, Hunan 410082, P. R. China.

Supramolecular glass and plastic are a new generation of artificial transparent materials that exhibit excellent optical behavior and processability. However, owing to inherent deficiencies in their mechanical toughness and long-term stability, supramolecular materials lack the potential for functionalization and application. Inspired by the toughening phenomena in biological systems, a synergistic covalent-and-supramolecular polymerization strategy was applied to construct plastic-like supramolecular materials with high transmittance the solvent-free one-pot amidation of thioctic acid and (poly)amines.

View Article and Find Full Text PDF

A bacterial strain, designated as A6, was isolated from the rhizosphere soil of a healthy muskmelon in Wenchang, Hainan Province, China. The cells of strain A6 were Gram-negative, aerobic, short rod and motile with a single polar flagellum. Strain A6 could tolerate up to 55.

View Article and Find Full Text PDF

Background: Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial pneumonia with restrictive ventilation. Recently, the structural and functional defects of small airways have received attention in the early pathogenesis of IPF. This study aimed to elucidate the characteristics of small airway epithelial dysfunction in patients with IPF and explore novel therapeutic interventions to impede IPF progression by targeting the dysfunctional small airways.

View Article and Find Full Text PDF

Structural and physicochemical properties of pea starch dual-treated with dry heating and galactomannans.

Int J Biol Macromol

December 2024

Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China. Electronic address:

The research on the combination of starch and galactomannans (GM) with dry heat treatment (DHT) is currently insufficient, which hinders the starch application. In this study, the impacts of dry heat treatment and GM complex on the structural, gelatinization properties, and digestibility of pea starch (PS) were investigated. The gelatinization viscosity and gel hardness of dry heated-PS were decreased.

View Article and Find Full Text PDF

Balancing methane emission and alkalinity conservation: Insights from mineral amendments in coastal sediments.

Sci Total Environ

January 2025

Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China; College of Ecology, Hainan University, Haikou 570228, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, PR China. Electronic address:

With global climate warming and ocean acidification, mineral amendments in coastal areas have emerged as a promising strategy to bolster carbon sinks and alkalinity. However, most research has predominantly focused on carbon dioxide (CO) absorption, with limited exploration of methane (CH) reduction despite its more potent greenhouse effect. To address this gap, our study conducted a microcosm manipulative experiment employing coastal wetlands sediments to elucidate the regulatory effects of various mineral amendments on greenhouse gas emissions (including CO and CH) and seawater alkalinity.

View Article and Find Full Text PDF

Pd/Cu-TCPP(Fe)-polydopamine mediated magnetic relaxation switching immunosensor for sensitive detection of chlorpyrifos.

J Hazard Mater

December 2024

State Key Laboratory of Marine Food Processing and Safety Control, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China. Electronic address:

This study presents the development of a magnetic relaxation switching (MRS) immunosensor for the sensitive detection of chlorpyrifos (CPF) with a signal amplification strategy using Pd/Cu-TCPP(Fe) hybrid nanosheets and polydopamine (PDA). Pd/Cu-TCPP(Fe) nanosheets, which exhibit high peroxidase-like activity and excellent storage stability, making them suitable replacements for natural enzymes in biosensors, are further functionalized with goat anti-mouse IgG (Ab) to construct an immunosensor. The mechanism relies on the competition between free CPF and the immobilized bovine serum albumin-CPF conjugates for antibody binding, which modulates the aggregation of magnetic nanoparticles (MNPs) that are related to the transverse relaxation time.

View Article and Find Full Text PDF

Microbial communities, both on the surface and within fruit, play a crucial role in reducing postharvest diseases and maintaining fruit quality. This study investigated the effects of co-culture fermentation supernatant of Debaryomyces hansenii (Y) and Bacillus atrophaeus (T) on disease control and quality preservation of postharvest litchi fruit, while exploring the underlying mechanisms through microbiome profiling. The results indicated that Y + T treatment not only reduced decay percentage, weight loss, and pH increase but also preserved the pericarp cell integrity and reduced the lignin accumulation.

View Article and Find Full Text PDF

Melatonin induces resistance against Colletotrichum gloeosporioides in mango fruit via regulation of defense-related genes by MiWRKY45 transcription factor.

Int J Biol Macromol

January 2025

School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, PR China. Electronic address:

Article Synopsis
  • Anthracnose, caused by the fungus Colletotrichum gloeosporioides, significantly leads to postharvest losses in mango fruits.
  • The study showed that applying melatonin (MT) at a concentration of 1 mmol L can limit the spread of anthracnose while boosting plant defense mechanisms, including several enzyme activities and the production of phenolic compounds.
  • MiWRKY45, a transcription factor found to increase expression in response to MT and the fungal infection, plays a key role in activating the phenylpropanoid pathway, thus enhancing mango resistance to anthracnose.
View Article and Find Full Text PDF

Dynamic Redeposition Over Bidirectional Amorphous NiFe-Oxides toward Surface Self-Healing for the Alkaline Oxygen Evolution Reaction.

Small

January 2025

Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Road, Haikou, 570228, P. R. China.

Article Synopsis
  • * A self-supported electrode design (NiFeOH/FeNiO/SS-A) exhibits a unique self-healing ability for cracks, along with strong activity and stability by redepositing dissolved ions from the interlayer.
  • * The amorphous FeNiO interlayer significantly enhances stability, reducing the impact of irreversible metal dissolution, and offers a new pathway for creating effective and durable OER catalytic electrodes.
View Article and Find Full Text PDF

Mn Doping at High-Activity Octahedral Vacancies of γ-FeO for Oxygen Reduction Reaction Electrocatalysis in Metal-Air Batteries.

Angew Chem Int Ed Engl

December 2024

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China.

γ-FeO with the intrinsic cation vacancies is an ideal substrate for heteroatom doping into the highly active octahedral sites in spinel oxide catalysts. However, it is still a challenge to confirm the vacancy location of γ-FeO through experiments and obtain enhanced catalytic performance by preferential occupation of octahedral sites for heteroatom doping. Here, a Mn-doped γ-FeO incorporated with carbon nanotubes catalyst was developed to successfully achieve preferential doping into highly active octahedral sites by employing γ-FeO as the precursor.

View Article and Find Full Text PDF

Constructing a LiO/LiZn Mixed Ionic Electron Conductive Layer by Ultrasonic Spraying to Enhance Li/Garnet Solid Electrolyte Interface Stability for Solid-State Batteries.

ACS Appl Mater Interfaces

December 2024

Guangdong Key Laboratory for Hydrogen Energy Technologies; School of Materials Science and Hydrogen Energy, Foshan University, 18 Jiangwan First Road, Foshan 528225, P. R. China.

Garnet-type LiGaLaZrO(LGLZO) is believed to be a promising solid electrolyte for solid-state batteries due to its high ionic conductivity, safety, and good stability toward Li. However, one of the most challenges in practical application of LGLZO is the poor contact between Li and LGLZO. Herein, a ZnO layer is prepared on the surface of LGLZO pellet by ultrasonic spraying.

View Article and Find Full Text PDF

Development and antibacterial evaluation of a dopamine-modified curcumin@zinc-based organic framework.

Dalton Trans

January 2025

Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China.

Antibiotics are crucial for treating and preventing bacterial infections. However, the widespread use of antibiotics has led to serious antibiotic resistance issues. To address the growing threat of antibiotic-resistant bacterial infections, we designed and synthesized an antibacterial composite material, CCM@ZIF-8@PDA, through a one-pot method and surface modification strategy.

View Article and Find Full Text PDF

A hydrophilic/hydrophobic switch on polymer surface triggered by calcite towards separation of hazardous PVC from plastic mixtures.

J Hazard Mater

February 2025

State Key Laboratory of Mineral Processing Science and Technology, BGRIMM Technology Group, Beijing 100160, PR China; College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 Hunan, PR China.

Hydrophilic modification of polymer surfaces is crucial for the emerging flotation separation of plastic waste towards resources recycling. In this study, we investigated a novel hydrophilic regulation induced by calcite to modify the surface wettability of PVC, ABS, PS, PC, and PET. The interactions between calcite and plastic molecules contributed to the selective formation of hydrophilic calcite shells on plastic surfaces.

View Article and Find Full Text PDF

Entropy-engineered perovskite cathodes: A novel approach for efficient and durable CO electrolysis.

J Colloid Interface Sci

March 2025

Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China; Shenzhen Research Institute, China University of Geosciences, Shenzhen, 518057, China. Electronic address:

The application of solid oxide electrolysis cells (SOECs) for high-temperature CO reduction reaction (CORR) is constrained by the electrochemical activity and stability of the cathode materials. In this study, a series of iron-based perovskite oxides, designed by systematically varying A-site configurational entropy, are investigated as cathode materials for the CORR. Experimental results reveal that these high-entropy materials, derived from LaSrFeO (LSF), exhibit high electrocatalytic activity and durability.

View Article and Find Full Text PDF

The sluggish sulfur reduction reaction (SRR) kinetics of lithium-sulfur (Li-S) batteries seriously limits the development of Li-S batteries. The initial reduction of solid (S) to liquid (soluble LiS (4≤n≤8)) is relatively easy due to the low activation energy, whereas the subsequent conversion of liquid (soluble LiS) to solid (insoluble LiS/LiS) has much higher activation energy, which leads to the accumulation of LiS and exacerbates the shuttle effect of LiS. Therefore, establishing one selective catalyst that decelerates the previous solid-liquid reaction and accelerates the subsequent liquid-solid reaction is essential for rational tailoring of the SRR for improved performance of Li-S batteries, but it represents a daunting challenge.

View Article and Find Full Text PDF

We prepared thermally activated delayed fluorescence (TADF) emitter dyads, NI-PTZ, NI-PTZ-2Br and NI-PSeZ, with naphthalimide (NI) as electron acceptor and 10H-phenothiazine (PTZ) or 10H-phenoselenazine (PSeZ) as electron donor to study the heavy-atom effect on the intersystem crossing (ISC) and reverse ISC (rISC) in the TADF emitters. The delayed fluorescence lifetimes of the dyads containing heavy atoms ( =5.9 μs for NI-PSeZ and =16.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a chronic inflammatory disease that affects the entire gastrointestinal tract. The complex etiology of IBD made it difficult to cure. Phosphodiesterases (PDEs) have garnered significant attention due to their involvement in immune and inflammatory responses in IBD.

View Article and Find Full Text PDF