33 results match your criteria: "Hacettepe University Graduate School of Health Sciences[Affiliation]"

Article Synopsis
  • - This chapter discusses the rising importance of mesenchymal stromal/stem cells (MSCs) in regenerative medicine and highlights their applications in advanced therapy medicinal products (ATMPs).
  • - It emphasizes advancements in cell culture technologies that enable large-scale MSC production while adhering to Good Manufacturing Practices (GMP) for safety and efficacy.
  • - The text presents an optimized upstream protocol for laboratory-scale MSC production from various tissue sources, which is crucial for effective downstream processing and clinical applications.
View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is characterized by a chronically dysregulated immune response in the gastrointestinal tract. Bone marrow multipotent mesenchymal stromal cells have an important immunomodulatory function and support regeneration of inflamed tissue by secretion of soluble factors as well as through direct local differentiation. CXCR4 is the receptor for CXCL12 (SDF-1, stromal-derived factor-1) and has been shown to be the main chemokine receptor, required for homing of MSCs.

View Article and Find Full Text PDF

Telocytes have some cytoplasmic extensions called telopodes, which are thought to play a role in mitochondrial transfer in intercellular communication. Besides, it is hypothesized that telocytes establish cell membrane-mediated connections with breast cancer cells in coculture and may contribute to the survival of neoplastic cell clusters together with other stromal cells. The aim of this study is to investigate the contribution of telocytes and telocyte-derived mitochondria, which have also been identified in breast tumors, to the tumor development of breast cancer stem cells (CSCs) via miR-146a-5p.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the biological effects of "proanthocyanidin" (PA), and "nisin" (Ni), on dental pulp stem cells (DPSCs) and LPS-induced DPSCs as well as their antimicrobial effects against and .

Materials And Methods: After characterization of DPSCs, cytotoxicity of PA and Ni on DPSCs were evaluated using a water-soluble tetrazolium salt (WST-1). The cytokines and chemokines released by DPSCs and the expression levels of IL-6, IL-8, and TNF alpha were detected with human Cytokine Array C5 and enzyme-linked immunosorbent assay (ELİSA), respectively.

View Article and Find Full Text PDF

Background: This study aims to investigate the roles of telocytes on the metastatic properties of breast cancer stem cells (CSCs), and to re-evaluate the effect of miR-21-5p expression on CSCs following the addition of telocytes.

Methods And Results: Telocytes from human bone marrow mononuclear cells were isolated/characterised. This was followed by the isolation/characterisation of CSCs from the MDA-MB-231.

View Article and Find Full Text PDF

Urinary omics has become a powerful tool for elucidating pathophysiology of glomerular diseases. However, no urinary omics analysis has been performed yet on renal AA amyloidosis. Here, we performed a comparative urine proteomic and metabolomic analysis between recently diagnosed renal AA amyloidosis (AA) and membranous nephropathy (MN) patients.

View Article and Find Full Text PDF

Approaches to vital pulp therapies.

Aust Endod J

December 2023

Department of Oral and Dental Health Research, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey.

Tooth decay, which leads to pulpal inflammation due to the pulp's response to bacterial components and byproducts is the most common infectious disease. The main goals of clinical management are to eliminate sources of infection, to facilitate healing by regulating inflammation indental tissue, and to replace lost tissues. A variety of novel approaches from tissue engineering based on stem cells, bioactive molecules, and extracellular matrix-like scaffold structures to therapeutic applications, or a combination of all these are present in the literature.

View Article and Find Full Text PDF

Additive manufacturing is growing in the area of dentistry and orthopedics due to the potential for the fabrication of individual implants. In this study, fused deposition modeling which is the most popular method was used to produce 3D scaffolds having a grid pattern from the polyurethane (PU) filament. Then, this scaffold was coated with boric acid (BA) with the thermionic vacuum arc technique.

View Article and Find Full Text PDF

Secondary acute myeloid leukemia (sAML) may develop following a prior therapy or may evolve from an antecedent hematological disorder such as Fanconi Anemia (FA). Pathophysiology of leukemic evolution is not clear. Etoposide (Eto) is a chemotherapeutic agent implicated in development of sAML.

View Article and Find Full Text PDF
Article Synopsis
  • - Small GTPases, particularly the Rab family, are crucial for various cellular functions, including membrane trafficking and maintaining cell structure, with nearly 70 known human members involved in these processes.
  • - Mutations in Rab genes can lead to a range of genetic disorders, including neurodegenerative diseases like Parkinson's and Alzheimer's, immune disorders, and certain cancers, highlighting their importance in health.
  • - The text discusses potential therapeutic strategies, including stem cell gene therapy and using Rabs as biomarkers, to treat cancer and other diseases while emphasizing the need for further research into Rabs' roles in complex conditions like diabetes.
View Article and Find Full Text PDF

Interstitial cells are present in the environment of stem cells in order to increase stem cell proliferation and differentiation and they are important to increase the efficiency of their transplantation. Telocytes (TCs) play an important role both in the preservation of tissue organ integrity and in the pathophysiology of many diseases, especially cancer. They make homo- or heterocellular contacts to form the structure of 3D network through their telopodes and deliver signaling molecules via a juxtacrine and/or paracrine association by budding shed vesicles into the vascular, nervous and endocrine systems.

View Article and Find Full Text PDF

Here, we describe a protocol for reprogramming of bone marrow-derived multipotent mesenchymal stromal/stem cells to obtain induced pluripotent stem cells from patients with primary immune deficiencies using lentiviral vectors, followed by hematopoietic differentiation of the MSC-derived iPSCs. This protocol is particularly helpful in cases where it is difficult to obtain sufficient numbers of hematopoietic cells for research and can be applied to model any hematological/immunological disease.

View Article and Find Full Text PDF

Intracellular and extracellular regulatory factors promote the potency and self-renewal property of stem cells. Methionine is fundamental for protein synthesis and regulation of methylation reactions. Specifically, methionine metabolism in embryonic and fetal development processes regulates gene expression profile/epigenetic identity of stem cells to achieve pluripotency and cellular functions.

View Article and Find Full Text PDF

Despite a vast amount of different methods, protocols and cryoprotective agents (CPA), stem cells are often frozen using standard protocols that have been optimized for use with cell lines, rather than with stem cells. Relatively few comparative studies have been performed to assess the effects of cryopreservation methods on these stem cells. Dimethyl sulfoxide (DMSO) has been a key agent for the development of cryobiology and has been used universally for cryopreservation.

View Article and Find Full Text PDF

Background: Vaccines that incorporate multiple SARS-CoV-2 antigens can further broaden the breadth of virus-specific cellular and humoral immunity. This study describes the development and immunogenicity of SARS-CoV-2 VLP vaccine that incorporates the four structural proteins of SARS-CoV-2.

Methods: VLPs were generated in transiently transfected HEK293 cells, purified by multimodal chromatography, and characterized by tunable-resistive pulse sensing, AFM, SEM, and TEM.

View Article and Find Full Text PDF

Dermal fibroblast cells interactions with single and triple bacterial-species biofilms.

Mol Biol Rep

April 2021

Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Hacettepe University, Sihhiye, 06100, Ankara, Turkey.

Polymicrobial biofilm leads to wound healing delay. We set up an in vitro co-culture model of single- and triple-species biofilms of Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis with dermal fibroblast to assess the fibroblast response against to the different biofilms. Scratch and viability assays and biofilm cell quantifications were performed by WST-1, CLSM and plating method, respectively.

View Article and Find Full Text PDF

Lysosomal storage disorders (LSDs) are rare inborn errors of metabolism caused by defects in lysosomal function. These diseases are characterized by accumulation of completely or partially degraded substrates in the lysosomes leading to cellular dysfunction of the affected cells. Currently, enzyme replacement therapies (ERTs), treatments directed at substrate reduction (SRT), and hematopoietic stem cell (HSC) transplantation are the only treatment options for LSDs, and the effects of these treatments depend strongly on the type of LSD and the time of initiation of treatment.

View Article and Find Full Text PDF

Desmin is a muscle-specific intermediate filament protein that has fundamental role in muscle structure and force transmission. Whereas human desmin protein is encoded by a single gene, two desmin paralogs (desma and desmb) exist in zebrafish. Desma and desmb show differential spatiotemporal expression during zebrafish embryonic and larval development, being similarly expressed in skeletal muscle until hatching, after which expression of desmb shifts to gut smooth muscle.

View Article and Find Full Text PDF

Exosomes are nano-sized vesicles involved in intercellular communication via delivery of molecules including lipids, nucleic acids, proteins, or other cellular components to distant or neighboring sites. Their ability to pass biological barriers, stability in physiological fluids without degradation, and distinctive affinity to target cells make exosomes very remarkable therapeutic vehicles. Virus-based approaches are some of the most widely used gene therapy methods; however, there are many issues need to be clarified such as high immunogenicity.

View Article and Find Full Text PDF

In recent years, multipotent mesenchymal stromal cells (MSCs) have demonstrated tremendous potential for use in regenerative medicine. CXCR4, the receptor for CXCL12, is highly expressed by bone marrow (BM) MSCs and the CXCR4/CXCL12 axis has been shown to be important for migration and homing of BM-MSCs. Typically, MSCs used for clinical applications are collected after culture expansion using enzymatic methods, such as trypsin.

View Article and Find Full Text PDF

Microphysiological systems, also known as organ-on-a-chip platforms, show promise for the development of new testing methods that can be more accurate than both conventional two-dimensional cultures and costly animal studies. The development of more intricate microphysiological systems can help to better mimic the human physiology and highlight the systemic effects of different drugs and materials. Nanomaterials are among a technologically important class of materials used for diagnostic, therapeutic, and monitoring purposes; all of which and can be tested using new organ-on-a-chip systems.

View Article and Find Full Text PDF

From Embryo to Adult: One Carbon Metabolism in Stem Cells.

Curr Stem Cell Res Ther

October 2021

Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Sihhiye, Ankara, Turkey.

Stem cells are undifferentiated cells with self-renewal property and varying differentiation potential that allow the regeneration of tissue cells of an organism throughout adult life beginning from embryonic development. Through the asymmetric cell divisions, each stem cell replicates itself and produces an offspring identical with the mother cell, and a daughter cell that possesses the characteristics of a progenitor cell and commits to a specific lineage to differentiate into tissue cells to maintain homeostasis. To maintain a pool of stem cells to ensure tissue regeneration and homeostasis, it is important to regulate the metabolic functioning of stem cells, progenitor cells and adult tissue stem cells that will meet their internal and external needs.

View Article and Find Full Text PDF

In this study we used two different techniques in order to isolate pericytes from the wall of human umbilical cord vein and get two different groups of cells were named as "pellet and primer cells". These groups were compared with each other according to their morphologies and stem cell marker expressions. Also, these two different populations were compared with each other and with human bone marrow mesenchymal stem cells (BM-MSCs) according to their transcriptomic profiles.

View Article and Find Full Text PDF