63,837 results match your criteria: "HK; and Kitasato University School of Allied Health Sciences[Affiliation]"

Chiral Phonons Induced from Spin Dynamics via Magnetoelastic Anisotropy.

Phys Rev Lett

December 2024

International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

Article Synopsis
  • The proposed mechanism generates chiral phononlike excitations through magnetoelastic couplings without needing magnetic fields or out-of-plane magnetization.
  • By analyzing a triangular lattice ferromagnet, the research reveals how lattice symmetry influences chirality, linking it to topological phonon classes.
  • The study suggests potential applications in spintronics and phononics, emphasizing the experimental viability of measuring phonon magnetization and thermal Hall conductivity in anisotropic magnets.
View Article and Find Full Text PDF

The Historical Case for a Strong and Diverse Neurology Clerkship Leadership Team.

Neurol Educ

December 2024

From the Department of Neurology (A.P., D.G.L., C.G.R., J.C.M., E.H.K., J.N., C.E.G., R.M.E.S.), School of Medicine, Johns Hopkins University, Baltimore, MD; and Division of Neuromuscular Disorders (V.C.), School of Medicine, University of North Carolina, Chapel Hill.

The role of the clerkship director has evolved significantly over the past century and now requires a diverse range of skills to meet the rigorous standards set by national accrediting bodies such as the Liaison Committee on Medical Education. We conducted a historical exploration, spanning the past 43 years, of the educational practices in the Neurology Department at Johns Hopkins University School of Medicine. We learned that no entity is responsible for documenting the history of the clerkship.

View Article and Find Full Text PDF

Perovskite nanocrystals (PNCs) are promising active materials because of their outstanding optoelectronic properties, which are finely tunable via size and shape. However, previous synthetic methods such as hot-injection and ligand-assisted reprecipitation require a high synthesis temperature or provide limited access to homogeneous PNCs, leading to the present lack of commercial value and real-world applications of PNCs. Here, we report a room-temperature approach to synthesize PNCs within a liquid crystalline antisolvent, enabling access to PNCs with a precisely defined size and shape and with reduced surface defects.

View Article and Find Full Text PDF

The cerebellum is activated by noxious stimuli and pathological pain but its role in noxious information processing remains unknown. Here, we show that in mice, cutaneous noxious electrical stimuli induced noradrenaline (NA) release from locus coeruleus (LC) terminals in the cerebellar cortex. Bergmann glia (BG) accumulated these LC-NA signals by increasing intracellular calcium in an integrative manner ('flares').

View Article and Find Full Text PDF

FSTL1 aggravates high glucose-induced oxidative stress and transdifferentiation in HK-2 cells.

Sci Rep

January 2025

Medical Imaging Center, First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang, China.

Chronic hyperglycemia, a hallmark of diabetes, can trigger inflammatory responses in the kidney, leading to diabetic nephropathy (DN). Follistatin-like protein 1 (FSTL1) has emerged as a potential therapeutic target in various kidney diseases. This study investigated the effect of high glucose on FSTL1 expression and its role in oxidative stress and cellular transdifferentiation injury in HK-2 human proximal tubule epithelial cells, a model of DN.

View Article and Find Full Text PDF

In patients with gastroesophageal reflux disease (GERD) whose symptoms improve with acid-suppression therapy, on-demand treatment could constitute maintenance therapy. This study investigated the comparative efficacy and safety of on-demand tegoprazan and proton-pump inhibitor (PPI) therapy in GERD. From six university hospitals in the Daejeon-Chungcheong region, we enrolled patients with GERD who had experienced symptomatic improvement with acid-suppressive therapy and, using a randomization table, randomly allocated these participants to two groups: to receive either tegoprazan 50 mg + esomeprazole placebo or tegoprazan placebo + esomeprazole 20 mg, respectively.

View Article and Find Full Text PDF

Wireless energy-responsive systems provide a foundational platform for powering and operating intelligent devices. However, current electronic systems relying on complex components limit their effective deployment in ambient environment and seamless integration of energy harvesting, storage, sensing, and communication. Here, we disclose a coupling effect of electromagnetic wave absorption and moist-enabled generation on carrier transportation and energy interaction regulated by ionic diode effect.

View Article and Find Full Text PDF

Trigger inducible tertiary lymphoid structure formation using covalent organic frameworks for cancer immunotherapy.

Nat Commun

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.

The discovery of tertiary lymphoid structures (TLS) within tumor tissues provides a promising avenue to promote the efficacy of cancer immunotherapy. Yet, the lack of effective strategies to induce TLS formation poses a substantial obstacle. Thus, the exploration of potential inducers for TLS formation is of great interest but remains challenging.

View Article and Find Full Text PDF

As the investigation of high efficiency thermally activated delayed fluorescence (TADF) materials become more mature, regulating the emission properties for single organic luminescence molecules has gained increasing interest recently. Herein, the donor-acceptor compounds F-AQ comprised of fluorene and anthraquinone is reported, and it exhibits a polymorphism with muti-color emission and TADF from high-level intersystem crossing (hRISC). The photodynamics and excited-state transient species were studied by femtosecond transient absorption (fs-TA) spectroscopy.

View Article and Find Full Text PDF

Understanding human endometrial dynamics in the establishment of endometrial receptivity remains a challenge, which limits early diagnosis and treatment of endometrial-factor infertility. Here, we decode the endometrial dynamics of fertile women across the window of implantation and characterize the endometrial deficiency in women with recurrent implantation failure. A computational model capable of both temporal prediction and pattern discovery is used to analyze single-cell transcriptomic data from over 220,000 endometrial cells.

View Article and Find Full Text PDF

Gut-liver translocation of pathogen Klebsiella pneumoniae promotes hepatocellular carcinoma in mice.

Nat Microbiol

January 2025

Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.

Hepatocellular carcinoma (HCC) is accompanied by an altered gut microbiota but whether the latter contributes to carcinogenesis is unclear. Here we show that faecal microbiota transplantation (FMT) using stool samples from patients with HCC spontaneously initiate liver inflammation, fibrosis and dysplasia in wild-type mice, and accelerate disease progression in a mouse model of HCC. We find that HCC-FMT results in gut barrier injury and translocation of live bacteria to the liver.

View Article and Find Full Text PDF

The purpose of this study was to analyze the efficacy of treatment and survival after administration of immune checkpoint inhibitor (ICI) in Japanese patients and had endocrine-related and/or other immune-related adverse events (irAEs), as well as irAEs in multiple organs. This is a single-center, retrospective, observational study of 571 Japanese patients treated with ICI at our hospital. We evaluated the occurrence of Grade 3 or higher irAEs and the life expectancy and treatment efficacy after ICI administration.

View Article and Find Full Text PDF

In-situ stress plays a pivotal role in influencing the desorption, adsorption, and transportation of coalbed methane. The reservoir gas content represents a pivotal physical parameter, encapsulating both the coalbed methane enrichment capacity and the underlying enrichment law of the reservoir. This investigation collates, computes, and consolidates data concerning pore pressure, breakdown pressure, closure pressure, triaxial principal stress, gas content, lateral pressure coefficient, and other pertinent variables from coal reservoirs within several coal-bearing synclines in the Liupanshui coalfield, China.

View Article and Find Full Text PDF
Article Synopsis
  • Sulfide solid-state electrolytes (SSEs) show great potential for all solid-state batteries due to their high ionic conductivity and flexibility, but they are sensitive to moisture, making current manufacturing methods incompatible.
  • A new reversible surface modification technique using 1-undecanethiol enhances the moisture resistance of sulfide SSEs, allowing them to maintain conductivity above 1 mS cm even after 2 days of exposure to 33% relative humidity, which is significantly better than existing methods.
  • This modification involves a thiol group that adheres to the SSE surface and a hydrophobic tail that repels water, paving the way for more efficient and cost-effective sulfide SSE manufacturing in battery applications.
View Article and Find Full Text PDF

Reversible multivalent carrier redox exceeding intercalation capacity boundary.

Nat Commun

January 2025

Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.

Compared with widely established monovalent-ion batteries, aqueous multivalent-ion batteries promise higher capacity release by achieving multiple electron-transfer events per ion intercalation in the host material. Despite plausibility, this high-capacity dream is untenable with the total tolerable redox charge-transfer limit of the host material for all carrier species equally, which is historically assumed to depend on the material rather than the guest carrier itself, and the kinetic hysteresis induced by larger charge/radius ratios induced kinetic hysteresis further enlarges the divide. Herein, we report that copper carrier redox in vanadium sulfide (VS) exceeds the intrinsic intercalation capacity boundary, with the highest capacity release as 675 mAh g at 0.

View Article and Find Full Text PDF

While self-assembled material based inverted perovskite solar cells have surpassed power conversion efficiencies of 26%, enhancing their performance in large-area configurations remains a significant challenge. In this work, we report a self-assembled material based hole-selective layer 4-(7H-dibenzo[c,g]carbazol-7-yl)phenyl)phosphonic acid, with a π-expanded conjugation. The enhanced intermolecular π-π interactions facilitate the self-assembly of 4-(7H-dibenzo[c,g]carbazol-7-yl)phenyl)phosphonic acid molecules to form an ordered bilayer with a hydrophilic surface, which passivates the buried perovskite interface defect and enables high-quality and large-area perovskite preparation, while simultaneously enhancing interfacial charge extraction and transport.

View Article and Find Full Text PDF

Counterintuitive DNA destabilization by monovalent salt at high concentrations due to overcharging.

Nat Commun

January 2025

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.

Monovalent salts are generally believed to stabilize DNA duplex by weakening inter-strand electrostatic repulsion. Unexpectedly, our force-induced hairpin unzipping experiments and thermal melting experiments show that LiCl, NaCl, KCl, RbCl, and CsCl at concentrations beyond ~1 M destabilize DNA, RNA, and RNA-DNA duplexes. The two types of experiments yield different changes in free energy during melting, while the results that high concentration monovalent salts destabilize duplexes are common.

View Article and Find Full Text PDF
Article Synopsis
  • The commercialization of perovskite solar cells (PSCs) is hindered by their fragility and sensitivity to moisture.
  • A new asynchronous cross-linking strategy using divinyl sulfone (DVS) improves perovskite crystallization and creates a durable network through post-treatment with glycerinum.
  • This method boosts the efficiency of PSCs to over 25%, enhances their water resistance, reduces stress, and improves durability, marking a significant advancement in their performance and longevity.
View Article and Find Full Text PDF

Entanglement microscopy and tomography in many-body systems.

Nat Commun

January 2025

Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Hong Kong, Hong Kong.

Quantum entanglement uncovers the essential principles of quantum matter, yet determining its structure in realistic many-body systems poses significant challenges. Here, we employ a protocol, dubbed entanglement microscopy, to reveal the multipartite entanglement encoded in the full reduced density matrix of the microscopic subregion in spin and fermionic many-body systems. We exemplify our method by studying the phase diagram near quantum critical points (QCP) in 2 spatial dimensions: the transverse field Ising model and a Gross-Neveu-Yukawa transition of Dirac fermions.

View Article and Find Full Text PDF

Gigantic Tellegen responses in metamaterials.

Nat Commun

January 2025

New Cornerstone Science Laboratory, Department of Physics, University of Hong Kong, 999077, Hong Kong, China.

Tellegen medium has long been a topic of debate, with its existence being contested over several decades. It was first proposed by Tellegen in 1948 and is characterized by a real-valued cross coupling between electric and magnetic responses, distinguishing it from the well-known chiral medium that has imaginary coupling coefficients. Significantly, Tellegen responses are closely linked to axion dynamics, an extensively studied subject in condensed matter physics.

View Article and Find Full Text PDF

High-purity hydrogen production from dehydrogenation of methylcyclohexane catalyzed by zeolite-encapsulated subnanometer platinum-iron clusters.

Nat Commun

January 2025

Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China.

Liquid organic hydrogen carriers (LOHCs) are considered promising carriers for large-scale H storage and transportation, among which the toluene-methylcyclohexane cycle has attracted great attention from industry and academia because of the low cost and its compatibility with the current infrastructure facility for the transportation of chemicals. The large-scale deployment of the H storage/transportation plants based on the toluene-methylcyclohexane cycle relies on the use of high-performance catalysts, especially for the H release process through the dehydrogenation of methylcyclohexane. In this work, we have developed a highly efficient catalyst for MCH dehydrogenation reaction by incorporating subnanometer PtFe clusters with precisely controlled composition and location within a rigid zeolite matrix.

View Article and Find Full Text PDF

Acylation stands as a fundamental process in both biological pathways and synthetic chemical reactions, with acylated saccharides and their derivatives holding diverse applications ranging from bioactive agents to synthetic building blocks. A longstanding objective in organic synthesis has been the site-selective acylation of saccharides without extensive pre-protection of alcohol units. In this study, we demonstrate that by simply altering the chirality of N-heterocyclic carbene (NHC) organic catalysts, the site-selectivity of saccharide acylation reactions can be effectively modulated.

View Article and Find Full Text PDF

Soft Metalens for Broadband Ultrasonic Focusing through Aberration Layers.

Nat Commun

January 2025

Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.

Aberration layers (AL) often present significant energy transmission barriers in microwave engineering, electromagnetic waves, and medical ultrasound. However, achieving broadband ultrasonic focusing through aberration layers like the human skull using conventional materials such as metals and elastomers has proven challenging. In this study, we introduce an inverse phase encoding method employing tunable soft metalens to penetrate heterogeneous aberration layers.

View Article and Find Full Text PDF

Tropical marine low cloud feedback is key to the uncertainty in climate sensitivity, and it depends on the warming pattern of sea surface temperatures (SSTs). Here, we empirically constrain this feedback in two major low cloud regions, the tropical Pacific and Atlantic, using interannual variability. Low cloud sensitivities to local SST and to remote SST, represented by lower-troposphere temperature, are poorly captured in many models of the latest global climate model ensemble, especially in the less-studied tropical Atlantic.

View Article and Find Full Text PDF

Background: Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease. Sodium-glucose cotransporter protein 2 inhibitors (SGLT2i) are antihyperglycemic agents that provide additional renal-protective effects in patients with DKD, independent of their glucose-lowering effects. However, the underlying mechanism remains unclear.

View Article and Find Full Text PDF