105 results match your criteria: "H. R. Patel Institute of Pharmaceutical Education and Research[Affiliation]"

Environmental contamination by pharmaceuticals has become a matter of concern as they are released in sewage systems at trace levels, thus impacting biological systems. Increasing concerns about the low-level occurrence of pharmaceuticals in the environment demands sensitive and selective monitoring. Owing to their high sensitivity and specificity carbon dots (CDs) have emerged as suitable fluorescent sensors.

View Article and Find Full Text PDF

Unveiling cyclodextrin conjugation as multidentate excipients: An exploratory journey across industries.

Carbohydr Res

December 2024

Department of Physics, Rayat Shikshan Sanstha's Dada Patil Mahavidyalaya, Karjat, Dist - Ahemadnagar, M.S. 414 402, India.

The discovery of branched molecules like dextrin by Schardinger in 1903 marked the inception of cyclodextrin (CD) utilization, catalyzing its journey from laboratory experimentation to widespread commercialization within the pharmaceutical industry. CD, a cyclic oligosaccharide containing glucopyranose units, acts as a versatile guest molecule, forming inclusion complexes (ICs) with various host molecules. Computational studies have become instrumental in elucidating the intricate interactions between β-CD and guest molecules, enabling the prediction of binding energy, forces, affinity, and complex stability.

View Article and Find Full Text PDF

Structural toxicity relationship (STR) of linezolid to mitigate myelosuppression and serotonergic toxicity.

Bioorg Med Chem

November 2024

Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule 425405, Maharashtra, India. Electronic address:

Article Synopsis
  • * Linezolid is an effective drug in the BPaL regimen for treating these resistant TB strains, but its use can be limited due to side effects like myelosuppression and MAO inhibition.
  • * Research is focusing on modifying Linezolid and its analogues to reduce toxic effects while maintaining their antibacterial effectiveness, leading to the development of safer alternatives for treating drug-resistant TB.
View Article and Find Full Text PDF

Hydrogen peroxide (HO) is suspected to promote cancer. Higher concentrations of HO have always harmed mammalian cells, other living things, as well as the environment. As well, elevated concentrations of HO might cause major health problems such as cancer, cardiovascular disease, asthma, Alzheimer's disease, etc.

View Article and Find Full Text PDF

Microneedle technology revolutionizes ocular drug delivery by addressing challenges in treating ocular diseases. This review explores its potential impact, recent advancements, and clinical uses. This minimally invasive technique offers precise control of drug delivery to the eye, with various microneedle types showing the potential to penetrate barriers in the cornea and sclera, ensuring effective drug delivery.

View Article and Find Full Text PDF

Chlorpyrifos (CPS) is widely found in food and water sources due to agricultural use, posing health and environmental risks. Therefore, this work introduces a fluorescent sensor design of silver nanoparticle-embedded nano zirconium-based metal-organic frameworks (UiO-66-NH@AgNPs) for accurate examination of CPS. Briefly, UiO-66-NH was synthesized hydrothermally, exhibiting weak luminescence owed to ligand-to-metal charge transfer (LMCT).

View Article and Find Full Text PDF

In this study, we developed a new fluorescence "on-off-on" sensor utilizing water-soluble cobalt/zinc-nitrogen co-doped graphene quantum dots (Co/Zn-N-GQDs) to recognize quinalphos pesticide in vegetable and fruit samples. Primarily, the synthesis method employed a one-pot hydrothermal approach, using betel leaves as a natural precursor and cobalt ("Co"), zinc ("Zn"), and urea ("N") as dopant sources. The Co/Zn-N-GQDs probes underwent comprehensive analytical characterization.

View Article and Find Full Text PDF

Breast cancer, the second leading global cause of death, affects 2.1 million women annually, with an alarming 15 percent mortality rate. Among its diverse forms, Triple-negative breast cancer (TNBC) emerges as the deadliest, characterized by the absence of hormone receptors.

View Article and Find Full Text PDF

Neurodegenerative disorders: Mechanisms of degeneration and therapeutic approaches with their clinical relevance.

Ageing Res Rev

August 2024

Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun; Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney 2007, Australia. Electronic address:

Neurodegenerative disorders (NDs) are expected to pose a significant challenge for both medicine and public health in the upcoming years due to global demographic changes. NDs are mainly represented by degeneration/loss of neurons, which is primarily accountable for severe mental illness. This neuronal degeneration leads to many neuropsychiatric problems and permanent disability in an individual.

View Article and Find Full Text PDF

A spectrofluorimetric method using fluorescent carbon dots (CDs) was developed for the selective detection of azelnidipine (AZEL) pharmaceutical in the presence of other drugs. In this study, N-doped CDs (N-CDs) were synthesized through a single-step hydrothermal process, using citric acid and urea as precursor materials. The prepared N-CDs showed a highly intense blue fluorescence emission at 447 nm, with a photoluminescence quantum yield of ~21.

View Article and Find Full Text PDF

More women die of breast cancer than of any other malignancy. The resistance and toxicity of traditional hormone therapy created an urgent need for potential molecules for treating breast cancer effectively. Novel biphenyl-substituted pyrazole chalcones linked to a pyrrolidine ring were designed by using a hybridization approach.

View Article and Find Full Text PDF
Article Synopsis
  • Quetiapine Fumarate (QF) is a poorly absorbed atypical antipsychotic, prompting the design of PEG-functionalized graphene oxide nanosheets (GON) for better nasal delivery.
  • The study utilized a modified Hummers process to synthesize GON, then created PEG-GON through carbodiimide chemistry, and attached QF using π-π stacking to form QF@PEG-GON, which underwent various characterizations and studies.
  • The resulting nanocomposite demonstrated significant mucoadhesion, a drug loading content of 9.2%, and achieved a 43.82% drug release within 24 hours, suggesting its potential as an effective nasal delivery system for QF.
View Article and Find Full Text PDF

Background: Estimation of the drug and development of the method is a critical aspect of formulation development and a critical factor for analytical scientists. Gefitinib is a poorly soluble anticancer drug.

Objective: The present research focuses on the topic of the development of innovative quality by design methods for the estimation of gefitinib (GF) from bulk, pharmaceutical tablet formulation, and complex nanoformulations.

View Article and Find Full Text PDF

Background And Purpose: Metal-organic frameworks (MOFs) have gained incredible consideration in the biomedical field due to their flexible structural configuration, tunable pore size and tailorable surface modification. These inherent characteristics of MOFs portray numerous merits as potential drug carriers, depicting improved drug loading, site-specific drug delivery, biocompatibility, biodegradability, etc.

Review Approach: The current review article sheds light on the synthesis and use of MOFs in drug delivery applications.

View Article and Find Full Text PDF

Despite the high medicinal value of tiopronin, there are substantial adverse effects such as yellow skin, yellow eyes, muscle aches, etc. Therefore, there is a huge necessity to identify tiopronin using advanced sensors in provided samples. Recently, the preference for graphene quantum dots (GQDs) and inorganic nanomaterial-based fluorescent sensors for the detection of pharmaceuticals has been extensively documented due to their plentiful advantages.

View Article and Find Full Text PDF

Clozapine-laden carbon dots delivered to the brain via an intranasal pathway: Synthesis, characterization, ex vivo, and in vivo studies.

Colloids Surf B Biointerfaces

May 2024

Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India; School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales 2052, Australia. Electronic address:

Clozapine, which is widely used to treat schizophrenia, shows low bioavailability due to poor solubility and high first-pass metabolism. The study aimed to design clozapine-loaded carbon dots (CDs) to enhance availability of the clozapine to the brain via intranasal pathway. The CDs were synthesized by pyrolysis of citric acid and urea at 200 °C by hydrothermal technique and characterized by photoluminescence, transmission electron microscopy (TEM), X-ray Photoelectron Spectrometer (XPS), and Fourier transform infrared spectrum (FTIR).

View Article and Find Full Text PDF

Presently, the preference for chitosan (CS) and gum polysaccharides in biomedical applications including drug delivery and wound healing has been extensively documented. Despite this, the demerits of CS and gum polysaccharides such as poor mechanical properties, degradation rate, swelling, etc., limit their applications for designing biocomposite films for drug delivery.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a long-term neurodegenerative condition characterized by impaired cognitive functions, particularly in the domains of learning and memory. Finding promising options for AD can be successful with a medication repurposing strategy. The goal of the research was to examine the neuroprotective characteristics of barbaloin in aluminum chloride (AlCl)-induced cognitive deficits and changes in rats through modulation of oxidative stress, cytokines, and brain-derived neurotrophic factor (BDNF) expression.

View Article and Find Full Text PDF

Vitamins are crucial for sustaining life because they play an essential role in numerous physiological processes. Vitamin deficiencies can lead to a wide range of severe health issues. In this context, there is a need to administer vitamin supplements through appropriate routes, such as the oral route, to ensure effective treatment.

View Article and Find Full Text PDF

We designed a highly sensitive fluorescent sensor for the early detection of sarcosine, a potential biomarker for prostate cancer. This sensor was based on surface-cobalt-doped fluorescent carbon quantum dots (Co-CD) using a FRET-based photoluminescent sensing platform. Blue luminescent carbon quantum dots (CQD) were synthesised through a hydrothermal approach, utilizing tree pod shells.

View Article and Find Full Text PDF

Emerging natural polymer-based architectured nanotherapeutics for the treatment of cancer.

Int J Biol Macromol

March 2024

Department of Bioinformatics, Averinbiotech Laboratories, Nallakunta, Hyderabad, Telangana, India.

The field of cancer therapy is advancing rapidly, placing a crucial emphasis on innovative drug delivery systems. The increasing global impact of cancer highlights the need for creative therapeutic strategies. Natural polymer-based nanotherapeutics have emerged as a captivating avenue in this pursuit, drawing substantial attention due to their inherent attributes.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HPTC) currently ranks as the third leading cause of cancer-related mortality, necessitating an advanced formulation strategy. Recently, lactoferrin (Lf) has been utilized as a specific targeting ligand in HPTC due to its high specificity towards the asialoglycoprotein receptor expressed in cancer cells. Therefore, we present the fabrication of an Lf-decorated carboxymethyl dextran-encased chitosan-coated europium metal-organic framework-based nanobioconjugate (Lf-CMD-CS-CUR@Eu-MOF) for targeted curcumin (CUR) delivery.

View Article and Find Full Text PDF

Presently, there is a necessity to design novel methods because of quercetin's significant biological relevance. Therefore, we developed the rose petal-derived graphene quantum dots embedded zinc metal organic frameworks (RP-GQDs@Zn-MOFs) based fluorescence "On-Off-On" nanoprobe for quercetin sensing. Initially, RP-GQDs were synthesized using rose petal waste and then subjected to embedding into Zn-MOFs.

View Article and Find Full Text PDF

The increased mortality rates associated with colorectal cancer highlight the pressing need for improving treatment approaches. While capsaicin (CAP) has shown promising anticancer activity, its efficacy is hampered due to low solubility, rapid metabolism, suboptimal bioavailability, and a short half-life. Therefore, this study aimed to prepare a lactoferrin-functionalized carboxymethyl dextran-coated egg albumin nanoconjugate (LF-CMD@CAP-EGA-NCs) for the targeted CAP delivery to enhance its potential for colorectal cancer therapy.

View Article and Find Full Text PDF

Cluster of differentiation (CD59), a cell surface glycoprotein, regulates the complement system to prevent immune damage. In cancer, altered CD59 expression allows tumors to evade immune surveillance, promote growth, and resist certain immunotherapies. Targeting CD59 could enhance cancer treatment strategies by boosting the immune response against tumors.

View Article and Find Full Text PDF