5,162,021 results match your criteria: "H&TRC- Health and Technology Research Center[Affiliation]"

This study aimed to develop gastroretentive tablets based on mucoadhesive-floating systems with encapsulated gentian (, Gentianaceae) root extract to overcome the low bioavailability and short elimination half-life of gentiopicroside, a dominant bioactive compound with systemic effect. The formulation also aimed to promote the local action of the extract in the stomach. Tablets were obtained by direct compression of sodium bicarbonate (7.

View Article and Find Full Text PDF

Hydrogels of Poly(2-hydroxyethyl methacrylate) and Poly(N,N-dimethylacrylamide) Interpenetrating Polymer Networks as Dermal Delivery Systems for Dexamethasone.

Pharmaceutics

January 2025

Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria.

: This study is an attempt to reveal the potential of two types of interpenetrating polymer network (IPN) hydrogels based on poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(N,N-dimethylacrylamide) (PDMAM). These IPNs were evaluated for their potential for dermal delivery of the hydrophobic drug dexamethasone (DEX). : The two types of IPNs were analyzed for their rheological behavior, swelling characteristics, and drug-loading capacity with DEX.

View Article and Find Full Text PDF

: The proton-coupled amino acid transporter (PAT1) is an intestinal absorptive solute carrier responsible for the oral bioavailability of some GABA-mimetic drug substances such as vigabatrin and gaboxadol. In the present work, we investigate if non-steroidal anti-inflammatory drug substances (NSAIDs) interact with substrate transport via human (h)PAT1. : The transport of substrates via hPAT1 was investigated in Caco-2 cells using radiolabeled substrate uptake and in oocytes injected with , measuring induced currents using the two-electrode voltage clamp technique.

View Article and Find Full Text PDF

Background: Nanotechnology has been the main area of focus for research in different disciplines, such as medicine, engineering, and applied sciences. Therefore, enormous efforts have been made to insert the use of nanoparticles into the daily routines of different platforms due to their impressive performance and the huge potential they could offer. Among numerous types of nanomaterials, titanate nanotubes have been widely recognised as some of the most promising nanocarriers due to their outstanding profile and brilliant design.

View Article and Find Full Text PDF

Background: A broad-spectrum anti-SARS-CoV-2 monoclonal antibody (mAb), SA55, is highly effective against SARS-CoV-2 variants. This trial aimed at demonstrating the safety, tolerability, local drug retention and neutralizing activity, systemic exposure level, and immunogenicity of the SA55 nasal spray in healthy individuals.

Methods: This phase I, dose-escalation clinical trial combined an open-label design with a randomized, controlled, double-blind design.

View Article and Find Full Text PDF

The development of novel long-acting injectables for local anesthetics is necessary to effectively manage the acute postoperative pain. The aim of this study was to prepare an injectable oil-based formulation of ropivacaine (ROP) prodrug (ropivacaine stearoxil, ROP-ST) and to investigate the pharmacokinetics and pharmacodynamics after injectable administration. A novel -acyloxymethyl prodrug of ROP, i.

View Article and Find Full Text PDF

: Fluoxetine (FLX) is the inhibitor of serotonin reuptake most prescribed in pregnant women with depression. This study evaluates the influence of gestational diabetes mellitus (GDM) on the enantioselective pharmacokinetics and transplacental distribution of FLX and its metabolite norfluoxetine (norFLX). : Ten pregnant women diagnosed with GDM (GDM group) were investigated in the third trimester of gestation after they achieved good glycemic control.

View Article and Find Full Text PDF

The two obstacles for treating glioma are the skull and the blood brain-barrier (BBB), the first of which forms a physical shield that increases the difficulties of traditional surgery or radiotherapy, while the latter prevents antitumor drugs reaching tumor sites. To conquer these issues, we take advantage of the high penetrating ability of sonodynamic therapy (SDT), combined with a novel nanocomplex that can easily pass the BBB. Through ultrasonic polymerization, the amphiphilic peptides (CGRRGDS) were self-assembled as a spherical shell encapsulating a sonosensitizer Rose Bengal (RB) and a plant-derived compound, sulforaphane (SFN), to form the nanocomplex SFN@RB@SPM.

View Article and Find Full Text PDF

L-Threonine-Derived Biodegradable Polyurethane Nanoparticles for Sustained Carboplatin Release.

Pharmaceutics

December 2024

Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.

The use of polymeric nanoparticles (NPs) in drug delivery systems offers the advantages of enhancing drug efficacy and minimizing side effects; In this study, L-threonine polyurethane (LTPU) NPs have been fabricated by water-in-oil-in-water emulsion and solvent evaporation using biodegradable and biocompatible LTPU. This polymer was pre-synthesized through the use of an amino acid-based chain extender, desaminotyrosyl L-threonine hexyl ester (DLTHE), where urethane bonds are formed by poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) triblock copolymer and 1,6-hexamethylene diisocyanate (HDI). LTPU is designed to be degraded by hydrolysis and enzymatic activity due to the presence of ester bonds and peptide bonds within the polymer backbone.

View Article and Find Full Text PDF

: Extracellular vesicles (EVs) can carry pathological cargo, contributing to disease progression. The enzyme neutral sphingomyelinase 2 (nSMase2) plays a critical role in EV biogenesis, making it a promising therapeutic target. Our lab previously identified a potent and selective inhibitor of nSMase2, named DPTIP (IC = 30 nM).

View Article and Find Full Text PDF

: This study aimed to evaluate the safety and efficacy of chitosan-based bioadhesive films for facilitating the topical delivery of curcumin in skin cancer treatment, addressing the pharmacokinetic limitations associated with oral administration. : The films, which incorporated curcumin, were formulated using varying proportions of chitosan, polyvinyl alcohol, Poloxamer 407, and propylene glycol. These films were assessed for stability, drug release, in vitro skin permeation, cell viability (with and without radiotherapy), and skin irritation.

View Article and Find Full Text PDF

: Alpha radionuclide therapy has emerged as a promising novel strategy for cancer treatment; however, the therapeutic potential of Ac-labeled peptides in pancreatic cancer remains uninvestigated. : In the cytotoxicity study, tumor cells were incubated with Ac-DOTA-RGD. DNA damage responses (γH2AX and 53BP1) were detected using flowcytometry or immunohistochemistry analysis.

View Article and Find Full Text PDF

Skin ageing, driven predominantly by oxidative stress from reactive oxygen species (ROS) induced by environmental factors like ultraviolet A (UVA) radiation, accounts for approximately 80% of extrinsic skin damage. L-glutathione (GSH), a potent antioxidant, holds promise in combating UVA-induced oxidative stress. However, its instability and limited penetration through the stratum corneum hinder its topical application.

View Article and Find Full Text PDF

: , or star fruit, is a shrub known for its medicinal properties, especially due to bioactive metabolites identified in its roots and fruit with anti-cancer activity. However, the biological effects of its leaves remain unexplored. This study aimed to assess the effects of ethanolic extract from leaves on triple-negative breast cancer (TNBC), an aggressive subtype lacking specific therapy.

View Article and Find Full Text PDF

A Series of Novel Alleles of Modulating Heading and Salt Tolerance in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China.

Rice ( L.) is a staple crop for nearly half of the global population and one of China's most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties.

View Article and Find Full Text PDF

Melatonin (MT) is a crucial hormone that controls and positively regulates plant growth under abiotic stress, but the biochemical and physiological processes of the combination of melatonin seed initiation and exogenous spray treatments and their effects on maize germination and seedling salt tolerance are not well understood. Consequently, in this research, we utilized the maize cultivars Zhengdan 958 (ZD958) and Demeiya 1 (DMY1), which are extensively marketed in northeastern China's high-latitude cold regions, to reveal the modulating effects of melatonin on maize salinity tolerance by determining the impacts of varying concentrations of melatonin on maize seedling growth characteristics, osmoregulation, antioxidant systems, and gene expression. The findings revealed that salt stress (100 mM NaCl) significantly inhibited maize seed germination and seedling development, which resulted in significant increases in the HO and O content and decreases in the antioxidant enzyme activity and photosynthetic pigment content in maize seedlings.

View Article and Find Full Text PDF

: The functional traits of twigs and leaves are closely related to the ability of plants to cope with heterogeneous environments. The analysis of the characteristics of twigs and leaves and leaf thermal dissipation in riparian plants is of great significance for exploring the light energy allocation and ecological adaptation strategies of plant leaves in heterogeneous habitats. However, there are few studies on the correlation between the twig-leaf characteristics of riparian plants and their heat dissipation in light heterogeneous environments.

View Article and Find Full Text PDF

Alkaloid Profile, Anticholinesterase and Antioxidant Activities, and Sexual Propagation in (Amaryllidaceae).

Plants (Basel)

January 2025

Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), San Juan CP5400, Argentina.

, a recently described endemic species from southern Peru, belongs to the Amaryllidaceae family and is known for its diversity of alkaloids. Amaryllidoideae have been studied for their diverse biological activities, particularly for their properties in treating neurodegenerative diseases. This work examines the alkaloidal profile using GC-MS and UPLC-MS/MS of alkaloid-enriched extracts obtained from the leaves and bulbs of and their inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes.

View Article and Find Full Text PDF

Plants face a range of environmental stresses, such as heat and drought, that significantly reduce their growth, development, and yield. Plants have developed complex signaling networks to regulate physiological processes and improve their ability to withstand stress. The key regulators of plant stress responses include polyamines (PAs) and gaseous signaling molecules (GSM), such as hydrogen sulfide (HS), nitric oxide (NO), methane (CH), carbon monoxide (CO), carbon dioxide (CO), and ethylene (ET).

View Article and Find Full Text PDF

Nitrogen (N) is an essential determinant of strawberry growth and productivity. However, plants exhibit varying preferences for sources of nitrogen, which ultimately affects its use efficiency. Thus, it is imperative to determine the preferred N source for the optimization of indoor strawberry production.

View Article and Find Full Text PDF

Lignin Metabolism Is Crucial in the Plant Responses to (Shen) in L.

Plants (Basel)

January 2025

Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.

(Shen) (Hemiptera: Cicadellidae) is a devastating insect pest species of , significantly affecting the yield and quality of tea. Due to growing concerns over the irrational use of insecticides and associated food safety, it is crucial to better understand the innate resistance mechanism of tea trees to . This study aims to explore the responses of tea trees to different levels of infestation.

View Article and Find Full Text PDF

Phenolic compounds, such as stilbenes and flavonoids, from spp. exhibit diverse biological activities, including antimicrobial, anti-inflammatory, and cytotoxicity properties. To this end, the objectives of this study were to establish hairy root cultures of and assess its capacity to produce these bioactive compounds.

View Article and Find Full Text PDF

Brid., a Bryophyta from Northwest Argentina as a Source of Antioxidants and Antimicrobials.

Plants (Basel)

January 2025

Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET-UNT), San Miguel de Tucumán T4000CBG, Argentina.

In recent years, numerous studies have emerged on the biological activities of bryophytes and their potential for therapeutic use. However, mosses appear to be a relatively overlooked group. The objective of this study was to conduct a phytochemical analysis of one hydroalcoholic extract of and to evaluate its potential as an antioxidant and antimicrobial agent.

View Article and Find Full Text PDF

Plants respond to higher ambient temperatures by modifying their growth rate and habitus. This review aims to summarize the accumulated knowledge obtained with Arabidopsis seedlings grown at normal and elevated ambient temperatures. Thermomorphogenesis in the shoot and the root is overviewed separately, since the experiments indicate differences in key aspects of thermomorphogenesis in the two organs.

View Article and Find Full Text PDF

Soil salinization severely restricts the growth and development of crops globally, especially in the northwest Loess Plateau, where apples constitute a pillar industry. Nanomaterials, leveraging their unique properties, can facilitate the transport of nutrients to crops, thereby enhancing plant growth and development under stress conditions. To investigate the effects of nano zinc oxide (ZnO NP) on the growth and physiological characteristics of apple self-rooted rootstock M9-T337 seedlings under saline alkali stress, one-year-old M9-T337 seedlings were used as experimental materials and ZnO NPs were used as donors for pot experiment.

View Article and Find Full Text PDF