1 results match your criteria: "Guangzhou University City Outer Ring Road No. 100[Affiliation]"

Manipulating Interphase Chemistry for Aqueous Zn Stabilization: The Role of Supersaturation.

Angew Chem Int Ed Engl

December 2024

Guangdong University of Technology, school of chemical engineering and light industry, Panyu, Guangzhou University City Outer Ring Road No. 100, 510006, Gaungzhou, CHINA.

The limited cycling durability of Zn anode, attributed to the absence of a robust electrolyte-derived solid electrolyte interphase (SEI), remains the bottleneck for the practical deployment of aqueous zinc batteries. Herein, we highlight the role of local supersaturation in governing the fundamental crystallization chemistry of Zn4SO4(OH)6·xH2O (ZSH) and propose a subtle supersaturation-controlled morphology strategy to tailor the interphase chemistry of Zn anode. By judiciously creating local high-supersaturation environment with organic caprolactam to manipulate the precipitation manner of zinc sulfate hydroxide (ZSH), lattice-lattice matched heterogeneous nucleation of ZSH (001) and Zn (002) is realized in aqueous ZnSO4, producing a dense, pseudo-coincidence interface capable of functioning as decent SEI.

View Article and Find Full Text PDF