22 results match your criteria: "Guangdong Academy of Sciences (China National Analytical Center Guangzhou)[Affiliation]"

Highly hydrophobic calixarene polymers for efficient enrichment of polar nitrobenzene compounds.

Talanta

January 2025

Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China; School of Chemical Engineering and Technology, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082, Zhuhai, PR China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou, 510070, PR China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, PR China.

Macrocyclic polymer materials exhibit excellent selectivity and adsorption performance in pollutant adsorption due to unique host-guest recognition. Herein, three kinds of calixarene polymers (C4P, C6P and C8P) were synthesized through Sonogashira reaction, and were characterized through H NMR, FT-IR, SEM, and TEM. The water contact angle experiments revealed that three kinds of calixarene polymers were highly hydrophobic, and they all exhibited high enrichment efficiency for weak polar chloro-substituted benzene compounds (chlorobenzene, o-chlorotoluene, p-dichlorobenzene and o-dichlorobenzene) and BTEX (benzene, toluene, ethylbenzene and xylenes).

View Article and Find Full Text PDF

Debittering and antioxidant improvement of soy protein hydrolysates using curcumin as hydrophobic core.

J Sci Food Agric

November 2024

Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Efficacy Component Testing and Risk Substance Rapid Screening of Health Food, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou, China.

Background: Protein hydrolysates possess various bioactive functions (e.g. antioxidant), but their bitter taste is unacceptable to most consumers.

View Article and Find Full Text PDF

Plant Root Secretion Alleviates Carbamate-Induced Molecular Alterations of Dissolved Organic Matter.

Toxics

September 2024

Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 511443, China.

Studying the interaction between pesticide contamination in the plant system and the dissolved organic matter (DOM) composition is important to understand the impact of pesticides and plants on the ecological function of DOM. The present study investigated the effects of DOM on the bioaccumulation and biotransformation of carbamates in plants, carbamate exposure on DOM composition, and plant root secretion on the interaction between DOM and carbamates. The concentrations of carbamates and their metabolites in living cabbage plants were continuously tracked through an in vivo analytical method.

View Article and Find Full Text PDF

PBAT biodegradable microplastics enhanced organic matter decomposition capacity and CO emission in soils with and without straw residue.

J Hazard Mater

December 2024

School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, China.

Recent studies show that biodegradable microplastics (BMPs) could increase soil CO emission, but whether altered carbon emission results from modified soil organic matter (SOM) decomposition remains underexplored. In this study, the effect and mechanisms of BMPs on CO emission from soil were investigated, using poly(butylene adipate-co-terephthalate) (PBAT, the main component of agricultural film) as an example. Considering that straw returning is a common agronomic measure which may interact with microplastics through affecting microbial activity, both soils with and without wheat straw were included.

View Article and Find Full Text PDF

Detection and health implications of phthalates in tea beverages in market: Application of novel solid-phase microextraction fibers.

Sci Total Environ

November 2024

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China.

Article Synopsis
  • The assessment and control of emerging organic pollutants, specifically phthalic acid esters (PAEs), in food have become essential due to their toxicity and carcinogenic effects on human health.
  • This study developed a highly sensitive analytical method using hydroxyl-functionalized covalent organic frameworks (COFs) to detect PAEs in tea beverages, demonstrating strong adsorption properties and reliability.
  • Results showed that PAE contamination levels in various tea brands had low health concerns, while the efficient detection method can be applied to other complex food matrices as well.
View Article and Find Full Text PDF

Preclinical evaluation of the SARS-CoV-2 M inhibitor RAY1216 shows improved pharmacokinetics compared with nirmatrelvir.

Nat Microbiol

April 2024

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.

Although vaccines are available for SARS-CoV-2, antiviral drugs such as nirmatrelvir are still needed, particularly for individuals in whom vaccines are less effective, such as the immunocompromised, to prevent severe COVID-19. Here we report an α-ketoamide-based peptidomimetic inhibitor of the SARS-CoV-2 main protease (M), designated RAY1216. Enzyme inhibition kinetic analysis shows that RAY1216 has an inhibition constant of 8.

View Article and Find Full Text PDF

Toxicity Assessment of Environmental Liquid Crystal Monomers: A Bacteriological Investigation on and .

Environ Sci Technol

February 2024

KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.

The widespread existence of liquid crystal monomers (LCMs) in various environmental matrices has been demonstrated, yet studies on the toxicological effects of LCMs are considerably scarce and are urgently needed to be conducted to assess the adverse impacts on ecology and human health. Here, we conducted a bacteriological study on two representative human commensal bacteria, () and (), to investigate the effect of LCMs at human-relevant dosage and maximum environmental concentration on growth, metabolome, enzymatic activity, and mRNA expression. Microbial growth results exhibited that the highest inhibition ratio of LCMs on reached 33.

View Article and Find Full Text PDF

The virus-induced cyclic dinucleotide 2'3'-c-di-GMP mediates STING-dependent antiviral immunity in Drosophila.

Immunity

September 2023

Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China; Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.

In mammals, the enzyme cGAS senses the presence of cytosolic DNA and synthesizes the cyclic dinucleotide (CDN) 2'3'-cGAMP, which triggers STING-dependent immunity. In Drosophila melanogaster, two cGAS-like receptors (cGLRs) produce 3'2'-cGAMP and 2'3'-cGAMP to activate STING. We explored CDN-mediated immunity in 14 Drosophila species covering 50 million years of evolution and found that 2'3'-cGAMP and 3'2'-cGAMP failed to control infection by Drosophila C virus in D.

View Article and Find Full Text PDF

Volatile/semi-volatile metabolites profiling in living vegetables via a novel covalent triazine framework based solid-phase microextraction fiber coupled with GC-QTOF-MS.

Food Chem

January 2024

Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China. Electronic address:

An in vivo solid-phase microextraction (SPME) fiber with high-coverage capture capacity of plant endogenous substances based on the porous covalent triazine framework (CTF) material was developed. The CTF fiber coupled with gas chromatographic quadrupole time-of-flight mass spectrometer (GC-QTOF-MS) analysis was used for monitoring untargeted endogenous metabolites in living Chinese cabbage plants (Brassica campestris L. ssp.

View Article and Find Full Text PDF

Modulating covalent organic frameworks with accessible carboxyl to boost superior extraction of polar nitrobenzene compounds from matrix-complicated beverages.

Food Chem

November 2023

Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, PR China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, PR China.

The wide use and high polarity of nitrobenzene compounds (NBCs) have caused a concern for their residues in daily beverages. Herein, the covalent organic frameworks (COFs) with abundant carboxyl were ingeniously designed by introducing a novel modulator, and further developed as solid phase microextraction (SPME) coatings. Due to the enhanced polar interaction, the extraction efficiencies of modified COF for NBCs were sharply increased.

View Article and Find Full Text PDF

A robust and ultra-high-surface hydrogen-bonded organic framework promoting high-efficiency solid phase microextraction of multiple persistent organic pollutants from beverage and tea.

Food Chem

July 2023

School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, PR China.

Persistent organic pollutants (POPs) are widely distributed in the environment and are toxic, even at low concentrations. In this study, we first used hydrogen-bonded organic framework (HOF) to enrich POPs, based on solid phase microextraction (SPME). The HOF called PFC-1 (self-assembled by 1,3,6,8-tetra(4-carboxylphenyl)pyrene) has an ultra-high specific surface area, excellent thermochemical stability, and abundant functional groups, making it potential to be an excellent coating in SPME.

View Article and Find Full Text PDF

In Vivo Profiling and Quantification of Chlorinated Paraffin Homologues in Living Fish.

Environ Sci Technol

February 2023

Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China.

Herein, we demonstrate the ability of a dual-purpose periodic mesoporous organosilica (PMO) probe to track the complex chlorinated paraffin (CP) composition in living animals by assembling it as an adsorbent-assisted atmospheric pressure chemical ionization Fourier-transform ion cyclotron resonance mass spectrometry (APCI-FT-ICR-MS) platform and synchronously performing it as the in vivo sampling device. First, synchronous solvent-free ionization and in-source thermal desorption of CP homologues were achieved by the introduction of the PMO adsorbent-assisted APCI module, generating exclusive adduct ions ([M - H]) of individual CP homologues (CCl) with enhanced ionization efficiency. Improved detection limits of short- and medium-chain CPs (0.

View Article and Find Full Text PDF

Customized oxygen-rich biochar with ultrahigh microporosity for ideal solid phase microextraction of substituted benzenes.

Sci Total Environ

April 2023

Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University Kexue Avenue 100, Zhengzhou 450001, China.

The synergistic effect of high microporosity and abundant heteroatoms is important for improving the performance of biochar in various fields. However, it is still challenging to create enough micropores for biochar, while simultaneously retaining the heteroatoms from biomass. A series of biochar with variable microstructures was successfully prepared by carbonization and following ball milling on lotus pedicel (LP), watermelon rind (WR), and litchi rind (LR).

View Article and Find Full Text PDF

In vivo environmental metabolomic profiling via a novel microextraction fiber unravels sublethal effects of environmental norfloxacin in gut bacteria.

Sci Total Environ

November 2022

KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China.

Emerging contaminants (ECs), especially antibiotics, have significantly polluted the environment and threaten the living circumstance of organisms. Environmental metabolomic has emerged to investigate the sublethal effects of ECs. However, lacking noninvasive and real-time sample pretreatment techniques restricts its development in environmental toxicology.

View Article and Find Full Text PDF

Understanding the arsenic (As) enrichment mechanisms in the subsurface environment relies on a systematic investigation of As valence species and their partitioning with the Fe (oxyhydr)oxide phases in the subsoil profile. The present study explored the distribution, speciation, partitioning, and (im)mobilization of As associated with Fe in four subsoil cores (∼30 m depth) from Hong Kong using sequential chemical extraction and X-ray absorption near edge spectroscopy. The subsoil profiles exhibited relatively high concentrations of As at 26.

View Article and Find Full Text PDF

The escalating contamination by per- and polyfluoroalkyl substances (PFAS) has become an urgent issue in recent years, and the structural diversity of PFAS is the major challenge for effective pollution control. Herein, we take the intrinsic advantages of squaramide and prepare a new two-dimensional covalent organic framework (FSQ-1) that exhibits broad-spectrum PFAS affinity. The tailor-made linker forges hydrogen-bond donors, hydrogen-bond acceptors, and fluorophilic segments into one framework.

View Article and Find Full Text PDF

Effects of mesoporous silica particle size and pore structure on the performance of polymer-mesoporous silica mixed matrix membranes.

RSC Adv

November 2021

National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences Beijing 101408 China

The fabrication of mixed matrix membranes (MMMs) has been regarded as an effective and economic approach to enhance the gas permeability and selectivity properties of conventional polymeric membranes for gas separation applications. However, the poor compatibility between polymeric matrix and inorganic filler in MMMs could lead to the generation of interfacial defects resulting in reduced gas selectivity. In this work, with the aim of studying the effect of particle size and pore structure of the filler on the performance of the resultant MMMs, nano/micro sized spherical mesoporous silicas with 2D/3D pore structure (MCM-41 and MCM-48) were synthesized and selected as fillers for the preparation of polydimethylsiloxane (PDMS)-based MMMs.

View Article and Find Full Text PDF

In vivo microcapillary sampling coupled with matrix-assisted laser desorption/ionization fourier transform ion cyclotron resonance mass spectrometry for real-time monitoring of paraquat and diquat in living vegetables.

Food Chem

September 2022

Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China. Electronic address:

An in vivo microcapillary sampling (MCS) method coupled with matrix-assisted laser desorption/ionization fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS) analysis was utilized to monitor the real-time bipyridine quaternary ammonium herbicides concentrations and assess their uptake and elimination behaviors in living cabbage plants noninvasively. Under optimized conditions, the proposed method for paraquat (PQ) and diquat (DQ) determination showed wide linear ranges (7.81-500 μg/kg), low limits of detection (0.

View Article and Find Full Text PDF

An ultrafast and facile nondestructive strategy to convert various inefficient commercial nanocarbons to highly active Fenton-like catalysts.

Proc Natl Acad Sci U S A

January 2022

Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China;

The Fenton-like process catalyzed by metal-free materials presents one of the most promising strategies to deal with the ever-growing environmental pollution. However, to develop improved catalysts with adequate activity, complicated preparation/modification processes and harsh conditions are always needed. Herein, we proposed an ultrafast and facile strategy to convert various inefficient commercial nanocarbons into highly active catalysts by noncovalent functionalization with polyethylenimine (PEI).

View Article and Find Full Text PDF

MOF-74/polystyrene-derived Ni-doped hierarchical porous carbon for structure-oriented extraction of polycyclic aromatic hydrocarbons and their metabolites from human biofluids.

J Hazard Mater

February 2022

MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China.

Polycyclic aromatic hydrocarbons (PAHs), as a major source that significantly increase the risk of developing lung cancer, severely jeopardize public health in modern society. The analysis of PAHs and their metabolites (hydroxylated PAHs, OH-PAHs) is important for biomonitoring and exposure assessment. However, due to the difference in their physico-chemical properties and matrix interference, realizing high-performance extraction of both PAHs and OH-PAHs is still a challenge.

View Article and Find Full Text PDF

In Vivo Contaminant Monitoring and Metabolomic Profiling in Plants Exposed to Carbamates via a Novel Microextraction Fiber.

Environ Sci Technol

September 2021

Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China.

In this study, a biocompatible solid-phase microextraction (SPME) fiber with high-coverage capture capacity based on a nitrogen-rich porous polyaminal was developed. The fiber was used to track the bioaccumulation and elimination of carbamates (isoprocarb, carbofuran, and carbaryl) and their metabolites (-cumenol, carbofuran phenol, and 1-naphthalenol) in living Chinese cabbage plants ( L. ssp.

View Article and Find Full Text PDF

Facile fabrication of composited solid phase microextraction thin membranes for sensitive detections of trace hydroxylated polycyclic aromatic hydrocarbons in human urine.

Anal Chim Acta

May 2021

MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou, 510070, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, China.

Article Synopsis
  • Solid phase microextraction (SPME) is explored for its effectiveness in extracting hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs), key indicators of PAH exposure.
  • A novel method utilizing surface solvent evaporation was developed to create SPME thin membranes, combining polydimethylsiloxane (PDMS) with various adsorbents like Uio66-NH, PPA, and OMC.
  • Among these, the OMC-PDMS membrane exhibited superior extraction efficiency in human urine samples, demonstrating promising detection limits and recovery rates, indicating the method's versatility in analyte enrichment.
View Article and Find Full Text PDF