625 results match your criteria: "Gordon center for medical imaging[Affiliation]"

Nanocarriers have shown significant promise in the diagnosis and treatment of various diseases, utilizing a wide range of biocompatible materials such as metals, inorganic substances, and organic components. Despite diverse design strategies, key physicochemical properties, including hydrodynamic diameter, shape, surface charge, and hydrophilicity/lipophilicity, are crucial for optimizing biodistribution, pharmacokinetics, and therapeutic efficacy. However, these properties are often influenced by drug payload, presenting an ongoing challenge in developing versatile platform technologies for theranostics.

View Article and Find Full Text PDF

Ketamine, a dissociative compound, shows promise in treating mood disorders, including treatment-resistant depression (TRD) and bipolar disorder (BD). Despite its therapeutic potential, the neurophysiological mechanisms underlying ketamine's effects are not fully understood. This study explored acute neurophysiological changes induced by subanesthetic doses of ketamine in BD patients with depression using electroencephalography (EEG) biomarkers.

View Article and Find Full Text PDF

Preliminary Evidence for Perturbation-Based tACS-EEG Biomarkers of Gamma Activity in Alzheimer's Disease.

Int J Geriatr Psychiatry

January 2025

Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Background: Alzheimer's disease (AD) is characterized by impaired inhibitory circuitry and GABAergic dysfunction, which is associated with reduced fast brain oscillations in the gamma band (γ, 30-90 Hz) in several animal models. Investigating such activity in human patients could lead to the identification of novel biomarkers of diagnostic and prognostic value. The current study aimed to test a multimodal "Perturbation-based" transcranial Alternating Current Stimulation-Electroencephalography (tACS)-EEG protocol to detect how responses to tACS in AD patients correlate with patients' clinical phenotype.

View Article and Find Full Text PDF

Selective Mu-Opioid Receptor Imaging Using F-Labeled Carfentanils.

J Med Chem

January 2025

Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States.

Carfentanil, a highly potent synthetic opioid, paradoxically serves as a crucial positron emission tomography (PET) imaging tool in neurobiological studies of the mu-opioid receptor (MOR) system when labeled with carbon-11 ([C]CFN). However, its clinical research use is hindered by extreme potency and the limited availability of short-lived carbon-11 ( = 20.4 min).

View Article and Find Full Text PDF

Bio-Orchestration of Cellular Organization and Human-Preferred Sensory Texture in Cultured Meat.

ACS Nano

January 2025

Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea.

For cultured meat to effectively replace traditional meat, it is essential to develop scaffolds that replicate key attributes of real meat, such as taste, nutrition, flavor, and texture. However, one of the significant challenges in replicating meat characteristics with scaffolds lies in the considerable gap between the stiffness preferred by cells and the textural properties desired by humans. To address this issue, we focused on the microscale environment conducive to cell growth and the macro-scale properties favored by humans.

View Article and Find Full Text PDF

Despite significant advancements in bioimaging technology, only a limited number of fluorophores are currently approved for clinical applications. Indocyanine green (ICG) is the first FDA-approved near-infrared (NIR) fluorophore and has significantly advanced clinical interventions over the past three decades. However, its single-channel imaging at 800 nm emission is often insufficient for capturing comprehensive diagnostic information during surgery.

View Article and Find Full Text PDF

The human brain is organized as a hierarchical global network. Functional connectivity research reveals that sensory cortices are connected to corresponding association cortices via a series of intermediate nodes linked by synchronous neural activity. These sensory pathways and relay stations converge onto central cortical hubs such as the default-mode network (DMN).

View Article and Find Full Text PDF

Elevated locus coeruleus metabolism provides resilience against cognitive decline in preclinical Alzheimer's disease.

Alzheimers Dement

November 2024

The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Article Synopsis
  • The study investigates how metabolic changes in the locus coeruleus (LC) relate to Alzheimer's disease (AD) and cognitive decline, raising questions about their progression and significance over time.
  • Using FDG-PET imaging, researchers analyzed LC metabolism in 604 ADNI participants and found that metabolic activity was higher in early preclinical stages, indicating potential cognitive resilience, but lower in later stages alongside cognitive impairment.
  • The results suggest that increased metabolism in the LC during early AD could help maintain memory function, while decreased levels in advanced stages may reflect neurodegenerative processes impacting cognition.
View Article and Find Full Text PDF

Treating cognitive impairment is a holy grail of modern clinical neuroscience. In the past few years, non-invasive brain stimulation is increasingly emerging as a therapeutic approach to ameliorate performance in patients with cognitive impairment and as an augmentation approach in persons whose cognitive performance is within normal limits. In patients with Alzheimer's disease, better understanding of brain connectivity and function has allowed for the development of different non-invasive brain stimulation protocols.

View Article and Find Full Text PDF

Altered Neural Processing of Interoception in Patients With Functional Neurological Disorder: A Task-Based fMRI Study.

J Neuropsychiatry Clin Neurosci

November 2024

Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague (Sojka, Serranová); Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, and Laureate Institute for Brain Research, Tulsa, Oklahoma (Khalsa); Functional Neurological Disorder Unit, Division of Behavioral Neurology and Integrated Brain Medicine, Department of Neurology, Division of Neuropsychiatry, Department of Psychiatry, and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston (Perez); Functional Neurological Disorder Unit, Division of Behavioral Neurology and Integrated Brain Medicine, Department of Neurology, Athinoula A. Martinos Center for Biomedical Imaging, and Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston (Diez).

Objective: Research suggests that disrupted interoception contributes to the development and maintenance of functional neurological disorder (FND); however, no functional neuroimaging studies have examined the processing of interoceptive signals in patients with FND.

Methods: The authors examined univariate and multivariate functional MRI neural responses of 38 patients with mixed FND and 38 healthy control individuals (HCs) during a task exploring goal-directed attention to cardiac interoception-versus-control (exteroception or rest) conditions. The relationships between interoception-related neural responses, heartbeat-counting accuracy, and interoceptive trait prediction error (ITPE) were also investigated for FND patients.

View Article and Find Full Text PDF

Effects of List-Mode-Based Intraframe Motion Correction in Dynamic Brain PET Imaging.

IEEE Trans Radiat Plasma Med Sci

November 2024

Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114 USA.

Motion is unavoidable in dynamic [F]-MK6240 Positron Emission Tomography (PET) imaging, especially in Alzheimer's disease (AD) research requiring long scan duration. To understand how motion correction affects quantitative analysis, we investigated two approaches: II-MC, which corrects for both inter-frame and intra-frame motion, and IO-MC, which only corrects for inter-frame motion. These methods were applied to 83 scans from 34 subjects, and we calculated distribution volume ratios (DVR) using the multilinear reference tissue model with two parameters (MRTM2) in tau-rich brain regions.

View Article and Find Full Text PDF

Boronic acid analogs are crucial in modern organic chemistry and drug development, serving as versatile reagents and intermediates with significant therapeutic applications. This area has gained increased interest with the recent development of the drug 4-boron-L-phenylalanine (L-BPA) for boron neutron capture therapy (BNCT). Fluorescent probe technology offers an essential pathway for imaging drugs in vitro and in vivo, providing high sensitivity with great spatial and temporal resolution for both disease diagnosis and drug development.

View Article and Find Full Text PDF

Anodal tDCS improves neuromuscular adaptations to short-term resistance training of the knee extensors in healthy individuals.

J Neurophysiol

December 2024

Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.

Experimental studies show improvement in physical performance following acute application of transcranial direct current stimulation (tDCS). This study examined the neuromuscular and neural responses to a single training session () and following a 3 wk resistance training program () performed with the knee extensors, preceded by tDCS over the primary motor cortex. Twenty-four participants (age, 30 ± 7 yr; stature, 172 ± 8 cm; mass, 72 ± 15 kg) were randomly allocated to perform either resistance training with anodal tDCS (a-tDCS) or a placebo tDCS (Sham).

View Article and Find Full Text PDF

Tuning Into Immune Cell Responses of Chronic Stress With Intravital Microscopy.

Arterioscler Thromb Vasc Biol

December 2024

Center for Systems Biology and Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA. Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA. Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA. Department of Internal Medicine I, University Hospital Würzburg, Germany.

View Article and Find Full Text PDF

In this work, we aim to predict the survival time (ST) of glioblastoma (GBM) patients undergoing different treatments based on preoperative magnetic resonance (MR) scans. The personalized and precise treatment planning can be achieved by comparing the ST of different treatments. It is well established that both the current status of the patient (as represented by the MR scans) and the choice of treatment are the cause of ST.

View Article and Find Full Text PDF

Reorganization of integration and segregation networks in brain-based visual impairment.

Neuroimage Clin

November 2024

Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA; Laboratory for Visual Neuroplasticity, Massachusetts Eye and Ear, Boston, MA, USA. Electronic address:

Article Synopsis
  • Growing evidence shows that the brain's connectivity changes based on development and environment, but the effects of early neurological injury on visual impairment (CVI) are not fully understood.
  • This study used advanced imaging techniques to compare brain connectivity in individuals with CVI to neurotypical controls, revealing reduced grey matter volume in key visual processing areas and significant changes in how different brain regions connect.
  • Participants with CVI had increased integration of visual information with sensory and multimodal areas, along with decreased connectivity to areas linked to emotional processing and default activities, providing insights into how early brain injury impacts visual function and overall brain organization.
View Article and Find Full Text PDF

Free-breathing 3D cardiac extracellular volume (ECV) mapping using a linear tangent space alignment (LTSA) model.

Magn Reson Med

February 2025

Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, Connecticut, USA.

Purpose: To develop a new method for free-breathing 3D extracellular volume (ECV) mapping of the whole heart at 3 T.

Methods: A free-breathing 3D cardiac ECV mapping method was developed at 3 T. T mapping was performed before and after contrast agent injection using a free-breathing electrocardiogram-gated inversion recovery sequence with spoiled gradient echo readout.

View Article and Find Full Text PDF

Endothelial dysfunction featuring insufficient endothelial nitric oxide synthase (eNOS) and accompanying nitric oxide (NO) deficiency is implicated in the pathogenesis of cardiovascular diseases. Restoring endothelial NO represents a promising approach to treating cerebrovascular diseases, including stroke. Low-power near-infrared (NIR) light shows diverse beneficial effects, broadly defined as photobiomodulation (PBM).

View Article and Find Full Text PDF

Despite perinatal damage to the cerebellum being one of the highest risk factors for later being diagnosed with autism spectrum disorder (ASD), it is not yet clear how the cerebellum might influence the development of cerebral cortex and whether this co-developmental process is distinct between neurotypical and ASD children. Leveraging a large structural brain MRI dataset of neurotypical children and those diagnosed with ASD, we examined whether structural variation in cerebellar tissue across individuals was correlated with neocortical variation during development, including the thalamus as a coupling factor. We found that the thalamus plays a distinct role in moderating cerebro-cerebellar structural coordination in ASD.

View Article and Find Full Text PDF

Cognitive fatigue (CF) increases accident risk reducing performance, especially during complex tasks such as driving. We evaluated whether transcranial random noise stimulation (tRNS) could mitigate CF and improve driving performance. In a double-blind study, thirty participants performed a virtual reality truck driving task during real ( = 15) or sham ( = 15) tRNS applied bilaterally on the "anti-fatigue network".

View Article and Find Full Text PDF

The role of parvalbumin interneuron dysfunction across neurodegenerative dementias.

Ageing Res Rev

November 2024

Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. Electronic address:

Parvalbumin-positive (PV+) basket neurons are fast-spiking, non-adapting inhibitory interneurons whose oscillatory activity is essential for regulating cortical excitation/inhibition balance. Their dysfunction results in cortical hyperexcitability and gamma rhythm disruption, which have recently gained substantial traction as contributing factors as well as potential therapeutic targets for the treatment of Alzheimer's Disease (AD). Recent evidence indicates that PV+ cells are also impaired in Frontotemporal Dementia (FTD) and Dementia with Lewy bodies (DLB).

View Article and Find Full Text PDF

Background: Transcranial temporal interference stimulation (tTIS) is a new, emerging neurostimulation technology that utilizes two or more electric fields at specific frequencies to modulate the oscillations of neurons at a desired spatial location in the brain. The physics of tTIS offers the advantage of modulating deep brain structures in a non-invasive fashion and with minimal stimulation of the overlying cortex outside of a selected target. As such, tTIS can be effectively employed in the context of therapeutics for the psychiatric disease of disrupted brain connectivity, such as major depressive disorder (MDD).

View Article and Find Full Text PDF

Investigating muscle coordination patterns with Granger causality analysis in protrusive motion from tagged and diffusion MRI.

JASA Express Lett

September 2024

Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.

The human tongue exhibits an orchestrated arrangement of internal muscles, working in sequential order to execute tongue movements. Understanding the muscle coordination patterns involved in tongue protrusive motion is crucial for advancing knowledge of tongue structure and function. To achieve this, this work focuses on five muscles known to contribute to protrusive motion.

View Article and Find Full Text PDF