571 results match your criteria: "Gheorghe Asachi" Technical University of Iasi[Affiliation]"

The evolution from conventional to modern agricultural practices, characterized by Agriculture 4.0 principles such as the application of innovative materials, smart water, and nutrition management, addresses the present-day challenges of food supply. In this context, polymer hydrogels have become a promising material for enhancing agricultural productivity due to their ability to retain and then release water, which can help alleviate the need for frequent irrigation in dryland environments.

View Article and Find Full Text PDF

The soft superficial tissues of the face are against gravity through an intricate network of ligaments and ligamentous attachments. The aim of this investigation is to delineate the relationship between the muscular, fibrous, and vascular components of the superficial musculoaponeurotic system of the face (SMAS) at the level of its periosteal fixation areas from advanced radiological and novel biomarkers' perspectives. These areas represent key points underlying skin aging and the longevity of restorative surgery results.

View Article and Find Full Text PDF

The current study deals with an examination of strategies for the sequential treatment of corn stalks (CSs) in an integrated manner aiming to obtain papermaking fibers and to recover both lignin and hemicelluloses (HCs). Several pathways of valorization were experimentally trialed, focusing on getting information from mass balance analysis in an attempt to reveal the potential outcomes in terms of pulp yield, chemical composition, and papermaking properties such as tensile and burst strength. The raw lignin amounts and purity as well as separated hemicelluloses were also characterized.

View Article and Find Full Text PDF

The precipitation-hardenable nickel-based superalloy Rene 41 exhibits remarkable mechanical characteristics and high corrosion resistance at high temperatures, properties that allow it to be used in high-end applications. This research paper presents findings on the influence of thermal shocks on its microstructure, hardness, and thermal diffusivity at temperatures between 700 and 1000 °C. Solar energy was used for cyclic thermal shock tests.

View Article and Find Full Text PDF

We developed and analyzed a novel non-sparking material based on CuAlBe for applications in potentially explosive environments. Using a master alloy of CuBe, an established material for anti-sparking tools used in oil fields, mines, or areas with potentially explosive gas accumulations, and pure Al, we used an Ar atmosphere induction furnace to obtain an alloy with ~10 wt% Al and ~2 wt% Be percentages and good chemical and structural homogeneity. The new material was tested in an explosive gaseous mixture (10% H or 6.

View Article and Find Full Text PDF

Spinal Cord Injury Management Based on Microglia-Targeting Therapies.

J Clin Med

May 2024

Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania.

Spinal cord injury is a complicated medical condition both from the clinician's point of view in terms of management and from the patient's perspective in terms of unsatisfactory recovery. Depending on the severity, this disorder can be devastating despite the rapid and appropriate use of modern imaging techniques and convenient surgical spinal cord decompression and stabilization. In this context, there is a mandatory need for novel adjunctive therapeutic approaches to classical treatments to improve rehabilitation chances and clinical outcomes.

View Article and Find Full Text PDF

Alzheimer's disease, the most common type of dementia worldwide, lacks effective disease-modifying therapies despite significant research efforts. Passive anti-amyloid immunotherapies represent a promising avenue for Alzheimer's disease treatment by targeting the amyloid-beta peptide, a key pathological hallmark of the disease. This approach utilizes monoclonal antibodies designed to specifically bind amyloid beta, facilitating its clearance from the brain.

View Article and Find Full Text PDF

Recent Advances in Magnesium-Magnesium Oxide Nanoparticle Composites for Biomedical Applications.

Bioengineering (Basel)

May 2024

Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iasi, Romania.

Magnesium (Mg) is considered an attractive option for orthopedic applications due to its density and elastic modulus close to the natural bone of the body, as well as biodegradability and good tensile strength. However, it faces serious challenges, including a high degradation rate and, as a result, a loss of mechanical properties during long periods of exposure to the biological environment. Also, among its other weaknesses, it can be mentioned that it does not deal with bacterial biofilms.

View Article and Find Full Text PDF

The Effectiveness Mechanisms of Carbon Nanotubes (CNTs) as Reinforcements for Magnesium-Based Composites for Biomedical Applications: A Review.

Nanomaterials (Basel)

April 2024

Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iaşi, Romania.

As a smart implant, magnesium (Mg) is highly biocompatible and non-toxic. In addition, the elastic modulus of Mg relative to other biodegradable metals (iron and zinc) is close to the elastic modulus of natural bone, making Mg an attractive alternative to hard tissues. However, high corrosion rates and low strength under load relative to bone are some challenges for the widespread use of Mg in orthopedics.

View Article and Find Full Text PDF

In this paper, the implementation of a new pupil detection system based on artificial intelligence techniques suitable for real-time and real-word applications is presented. The proposed AI-based pupil detection system uses a classifier implemented with slim-type neural networks, with its classes being defined according to the possible positions of the pupil within the eye image. In order to reduce the complexity of the neural network, a new parallel architecture is used in which two independent classifiers deliver the pupil center coordinates.

View Article and Find Full Text PDF

A Holographic-Type Model in the Description of Polymer-Drug Delivery Processes.

Pharmaceuticals (Basel)

April 2024

Department of Medical Oncology-Radiotherapy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Str, 700115 Iasi, Romania.

A unitary model of drug release dynamics is proposed, assuming that the polymer-drug system can be assimilated into a multifractal mathematical object. Then, we made a description of drug release dynamics that implies, via Scale Relativity Theory, the functionality of continuous and undifferentiable curves (fractal or multifractal curves), possibly leading to holographic-like behaviors. At such a conjuncture, the Schrödinger and Madelung multifractal scenarios become compatible: in the Schrödinger multifractal scenario, various modes of drug release can be "mimicked" (via period doubling, damped oscillations, modulated and "chaotic" regimes), while the Madelung multifractal scenario involves multifractal diffusion laws (Fickian and non-Fickian diffusions).

View Article and Find Full Text PDF

The incidence and prevalence of cardiac and cerebrovascular diseases are constantly increasing, with chronic coronary syndrome and ischemic stroke as the leading causes of morbidity and mortality worldwide. According to current knowledge, the heart-brain axis is more than a theoretical concept, with many common pathophysiological mechanisms involved in the onset and evolution of both coronary and cerebral ischemia. Moreover, the focus is on the prevention and early intervention of risk factors in searching for targeted and personalized medical treatment.

View Article and Find Full Text PDF

There are some important advantages presented by metal specimens coated with WIP-C1 (Ni/CrC)-type materials. However, given the coating methods and the stress under dynamic loads, there are issues that need to be taken into account, particularly in terms of the behavior at the interface between the two materials. Using standardized cylindrical 1018 steel specimens uniformly coated with WIP-C1 (Ni/CrC) by cold spraying, this study investigated the fatigue behavior of the specimen as a whole, focusing on the interface areas of the two materials.

View Article and Find Full Text PDF

Heat Treatment's Vital Role: Elevating Orthodontic Mini-Implants for Superior Performance and Longevity-Pilot Study.

Dent J (Basel)

April 2024

Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, "Gr. T. Popa" University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania.

Unlabelled: Orthodontic mini-implants are devices used for anchorage in various orthodontic treatments. We conducted a pilot study which aimed to observe preliminary trends regarding the impact of heat treatment on the elastic modulus of Ti6Al4V alloy and stainless steel 316L mini-implants. The initial phase involved testing the impact of heat treatment on the mechanical properties of Ti6Al4V alloy and stainless steel 316L mini-implants.

View Article and Find Full Text PDF

Impact of Heavy Metal Pollution in the Environment on the Metabolic Profile of Medicinal Plants and Their Therapeutic Potential.

Plants (Basel)

March 2024

Department of Environmental Engineering and Management, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania.

The paper provides a comprehensive examination of heavy metal stress on medicinal plants, focusing on its impact on antioxidant capacity and biosynthetic pathways critical to their therapeutic potential. It explores the complex relationship between heavy metals and the physiological and biochemical responses of medicinal plants, highlighting how metal stress disrupts biosynthetic pathways, altering concentrations of secondary metabolites. This disruption may compromise the overall quality and efficacy of medicinal plants, requiring a holistic understanding of its cumulative impacts.

View Article and Find Full Text PDF
Article Synopsis
  • * The study analyzes various properties of the mine tailings, including particle size, chemical composition, and their reactivity in alkaline conditions, which are crucial for the geopolymerization process.
  • * Results indicate that heavy metals in the tailings remain mostly inert during geopolymer creation, suggesting that the geopolymers produced will have a minimal negative impact on the environment.
View Article and Find Full Text PDF

This paper presents a study of 2D roughness profiles on a flat surface generated on a steel workpiece by ball nose end milling with linear equidistant tool paths (pick-intervals). The exploration of the milled surface with a surface roughness tester (on the pick and feed directions) produces 2D roughness profiles that usually have periodic evolutions. These evolutions can be considered as time-dependent signals, which can be described as a sum of sinusoidal components (the wavelength of each component is considered as a period).

View Article and Find Full Text PDF

The demand for tailored, disease-adapted, and easily accessible radiopharmaceuticals is one of the most persistent challenges in nuclear imaging precision medicine. The aim of this work was to develop two multimodal radiotracers applicable for both SPECT and PET techniques, which consist of a gold nanoparticle core, a shell involved in radioisotope entrapment, peripherally placed targeting molecules, and biocompatibilizing polymeric sequences. Shell decoration with glucosamine units located in sterically hindered molecular environments is expected to result in nanoparticle accumulation in high-glucose-consuming areas.

View Article and Find Full Text PDF

Magnetic Shape Memory Nanocomposites Assembled with High Speed High Pressure Torsion.

Nanomaterials (Basel)

February 2024

Department of Materials Engineering and Environment, Faculty of Engineering, "Dunarea de Jos" University of Galati, 47 Domneasca Street, RO-800008 Galati, Romania.

When a severe plastic deformation (SPD) process is performed at high temperatures, it becomes more versatile. Designed originally for the bulk nanoconstruction of hard-to-deform alloys, high-speed high-pressure torsion (HSHPT) is an SPD method used in this research for assembling multiple layers of shape memory nanocomposites. Three hard-to-deform magnetic alloys in the cast state were used.

View Article and Find Full Text PDF

The use of residual microbial biomass from various industries in emerging pollutant removal strategies represents a new area of research in the field. In this case, we examined how to remove reactive dyes from an aqueous solution utilizing a biosorbent made of residual biomass from immobilized () in a polymer matrix using a dynamic system. Fluidized bed column biosorption investigations were carried out on a laboratory scale.

View Article and Find Full Text PDF

Investigations on the Degradation Behavior of Processed FeMnSi-xCu Shape Memory Alloys.

Nanomaterials (Basel)

February 2024

Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania.

A new functional Fe-30Mn-5Si-xCu (x = 1.5 and 2 wt%) biomaterial was obtained from the levitation induction melting process and evaluated as a biodegradable material. The degradation characteristics were assessed in vitro using immersion tests in simulated body fluid (SBF) at 37 ± 1 °C, evaluating mass loss, pH variation that occurred in the solution, open circuit potential (OCP), linear and cyclic potentiometry (LP and CP), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and nano-FTIR.

View Article and Find Full Text PDF

Structure Optimization of Some Single-Ion Conducting Polymer Electrolytes with Increased Conductivity Used in "Beyond Lithium-Ion" Batteries.

Polymers (Basel)

January 2024

Department of Communications, Faculty of Electronics, Telecommunications, and Information Technologies, "Politehnica" University of Timisoara, V. Pârvan Blvd., No. 2, 300223 Timisoara, Romania.

Simulation techniques implemented with the HFSS program were used for structure optimization from the point of view of increasing the conductivity of the batteries' electrolytes. Our analysis was focused on reliable "beyond lithium-ion" batteries, using single-ion conducting polymer electrolytes, in a gel variant. Their conductivity can be increased by tuning and correlating the internal parameters of the structure.

View Article and Find Full Text PDF

Background: While previous studies have provided insights into the effects of zinc oxide (ZnO) and titanium dioxide (TiO) nanoparticles (NPs) on aquatic organisms, there is still a substantial amount of information lacking about the possible effects of their doped counterparts. The goal of the current work was to address this gap by examining Mytilus galloprovincialis reaction to exposure to doped and undoped nanoparticles.

Methods: Two concentrations (50 or 100 µg/L) of undoped ZnO and TiO NPs, as well as their gold (Au) doped counterparts, were applied on mussels for 14 days, and the effects on biomarkers activities in digestive glands and gills were assessed by spectrophotometry.

View Article and Find Full Text PDF

It is known that ceramic-polymer composite materials can be used to manufacture spherical bodies in the category of balls. Since balls are frequently subjected to compression loads, the paper presents some research results on the compression behavior of balls made of ceramic composite materials with a polymer matrix. The mathematical model of the pressure variation inside the balls highlights the existence of maximum values in the areas of contact with other parts.

View Article and Find Full Text PDF

Nowadays, the Magnetically Targeted Drug Delivery System (MTDDS) is among the most attractive and promising strategies for delivering drugs to the target site. The present study aimed to obtain a biopolymer-magnetite-drug nanosystem via a double crosslinking (ionic and covalent) technique in reverse emulsion, which ensures the mechanical stability of the polymer support in the form of original hybrid nanospheres (NSMs) loaded with biologically active principles (the 5-Fluorouracil (5-FU)) as a potential treatment for cancer. Obtained NSMs were characterized in terms of structure (FT-IR), size (DLS), morphology (SEM), swelling, and 5-FU entrapment/release properties, which were dependent on the synthesis parameters (polymer concentration, dispersion speed, and amount of ionic crosslinking agent).

View Article and Find Full Text PDF