4 results match your criteria: "Germany Center for Integrated Protein Sciences[Affiliation]"
EMBO J
April 2016
Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, Munich, Germany Center for Integrated Protein Sciences, Munich, Germany
The Mre11-Rad50-Nbs1 (MRN) complex is a central factor in the repair of DNA double-strand breaks (DSBs). The ATP-dependent mechanisms of how MRN detects and endonucleolytically processes DNA ends for the repair by microhomology-mediated end-joining or further resection in homologous recombination are still unclear. Here, we report the crystal structures of the ATPγS-bound dimer of the Rad50(NBD)(nucleotide-binding domain) from the thermophilic eukaryote Chaetomium thermophilum(Ct) in complex with either DNA or CtMre11(RBD)(Rad50-binding domain) along with small-angle X-ray scattering and cross-linking studies.
View Article and Find Full Text PDFBiochem J
August 2015
Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, 81377 Munich, Germany
The identification of the essential bacterial second messenger cyclic-di-AMP (c-di-AMP) synthesized by the DNA-integrity scanning protein A (DisA) has opened up a new and emerging field in bacterial signalling. To further analyse the diadenylate cyclase (DAC) reaction catalysed by the DAC domains of DisA, we crystallized Thermotoga maritima DisA in the presence of different ATP analogues and metal ions to identify the metal-binding site and trap the enzyme in pre- and post-reaction states. Through structural and biochemical assays we identified important residues essential for the reaction in the active site of the DAC domains.
View Article and Find Full Text PDFEMBO J
December 2014
Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, Munich, Germany Center for Integrated Protein Sciences, Munich, Germany
The Mre11-Rad50 nuclease-ATPase is an evolutionarily conserved multifunctional DNA double-strand break (DSB) repair factor. Mre11-Rad50's mechanism in the processing, tethering, and signaling of DSBs is unclear, in part because we lack a structural framework for its interaction with DNA in different functional states. We determined the crystal structure of Thermotoga maritima Rad50(NBD) (nucleotide-binding domain) in complex with Mre11(HLH) (helix-loop-helix domain), AMPPNP, and double-stranded DNA.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
July 2014
Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany Center for Integrated Protein Sciences, 81377 Munich, Germany.
DNA double-strand breaks are repaired by two major pathways, homologous recombination or nonhomologous end joining. The commitment to one or the other pathway proceeds via different steps of resection of the DNA ends, which is controlled and executed by a set of DNA double-strand break sensors, endo- and exonucleases, helicases, and DNA damage response factors. The molecular choreography of the underlying protein machinery is beginning to emerge.
View Article and Find Full Text PDF