50 results match your criteria: "Germany Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)[Affiliation]"

Age-dependent structural reorganization of utricular ribbon synapses.

Front Cell Dev Biol

August 2023

Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.

In mammals, spatial orientation is synaptically-encoded by sensory hair cells of the vestibular labyrinth. Vestibular hair cells (VHCs) harbor synaptic ribbons at their presynaptic active zones (AZs), which play a critical role in molecular scaffolding and facilitate synaptic release and vesicular replenishment. With advancing age, the prevalence of vestibular deficits increases; yet, the underlying mechanisms are not well understood and the possible accompanying morphological changes in the VHC synapses have not yet been systematically examined.

View Article and Find Full Text PDF

The dynamics of neuronal microtubules are essential for brain plasticity. Vesicular transport and synaptic transmission, additionally, requires acetylation of α-tubulin, and aberrant tubulin acetylation and neurobiological deficits are associated. Prolonged exposure to a stressor or consumption of drugs of abuse, like marihuana, lead to neurological changes and psychotic disorders.

View Article and Find Full Text PDF

Olfactory sensing is generally organized into groups of similarly sensing olfactory receptor neurons converging into their corresponding glomerulus, which is thought to behave as a uniform functional unit. It is however unclear to which degree axons within a glomerulus show identical activity, how many converge into a glomerulus, and to answer these questions, how it is possible to visually separate them in live imaging. Here we investigate activity of olfactory receptor neurons and their axon terminals throughout olfactory glomeruli using electrophysiological recordings and rapid 4D calcium imaging.

View Article and Find Full Text PDF

The mechanisms regulating myelin repair in the adult central nervous system (CNS) are unclear. Here, we identify DNA hydroxymethylation, catalyzed by the Ten-Eleven-Translocation (TET) enzyme TET1, as necessary for myelin repair in young adults and defective in old mice. Constitutive and inducible oligodendrocyte lineage-specific ablation of Tet1 (but not of Tet2), recapitulate this age-related decline in repair of demyelinated lesions.

View Article and Find Full Text PDF

Approximately 80% of neuromyelitis optica spectrum disorder (NMOSD) patients harbor serum anti-aquaporin-4 autoantibodies targeting astrocytes in the CNS. Crucial for NMOSD lesion initiation is disruption of the blood-brain barrier (BBB), which allows the entrance of Abs and serum complement into the CNS and which is a target for new NMOSD therapies. Astrocytes have important functions in BBB maintenance; however, the influence of their loss and the role of immune cell infiltration on BBB permeability in NMOSD have not yet been investigated.

View Article and Find Full Text PDF

Chronic stress causes a variety of physiological and behavioral alterations, including social impairments, altered endocrine function, and an increased risk for psychiatric disorders. Thereby, social stress is one of the most effective stressful stimuli among mammals and considered to be one of the major risk factors for the onset and progression of neuropsychiatric diseases. For analyzing the effects of social stress in mice, the resident/intruder paradigm of social defeat is a widely used model.

View Article and Find Full Text PDF

Pathology of myelinated axons in the PLP-deficient mouse model of spastic paraplegia type 2 revealed by volume imaging using focused ion beam-scanning electron microscopy.

J Struct Biol

May 2020

Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany. Electronic address:

Advances in electron microscopy including improved imaging techniques and state-of-the-art detectors facilitate imaging of larger tissue volumes with electron microscopic resolution. In combination with genetic tools for the generation of mouse mutants this allows assessing the three-dimensional (3D) characteristics of pathological features in disease models. Here we revisited the axonal pathology in the central nervous system of a mouse model of spastic paraplegia type 2, the Plp mouse.

View Article and Find Full Text PDF

Dysfunctions in the endocannabinoid system have been associated with experimental animal models and multiple sclerosis patients. Interestingly, the endocannabinoid system has been reported to confer neuroprotection against demyelination. The present study aims to assess the effects of the cannabinoid agonist WIN-55,212-2 in cuprizone fed animals on myelin repair capacity.

View Article and Find Full Text PDF

FIB-SEM of mouse nervous tissue: Fast and slow sample preparation.

Methods Cell Biol

April 2020

Department of Neurogenetics, Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany. Electronic address:

Focused ion beam-scanning electron microscopy (FIB-SEM) has become a widely used technique in life sciences. To achieve the best data quality, sample preparation is important and has to be adapted to the specimen and the specific application. Here we illustrate three preparation procedures for mouse nervous tissue: First, the use of high-pressure freezing followed by direct imaging of vitrified tissue without any staining in the FIB-SEM under cryo-conditions as direct and fast procedure.

View Article and Find Full Text PDF
Article Synopsis
  • Physical activity leads to significant adaptations in both mental and physical health, particularly through the release of extracellular vesicles (EVs) during exercise, which may play a role in systemic signaling.
  • Researchers conducted a study on healthy male athletes who underwent an incremental cycling test, discovering various characteristics and subtypes of these exercise-associated extracellular vesicles (ExerVs) in their blood.
  • Through various purification and analysis techniques, they found that ExerVs increased in number during exercise, with specific cell types like lymphocytes, monocytes, and endothelial cells identified as contributors to this process.
View Article and Find Full Text PDF

Michael W. Sereda was incorrectly associated with the Department of Cellular Neurophysiology, Hanover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany.

View Article and Find Full Text PDF

In contrast to acute peripheral nerve injury, the molecular response of Schwann cells in chronic neuropathies remains poorly understood. Onion bulb structures are a pathological hallmark of demyelinating neuropathies, but the nature of these formations is unknown. Here, we show that Schwann cells induce the expression of Neuregulin-1 type I (NRG1-I), a paracrine growth factor, in various chronic demyelinating diseases.

View Article and Find Full Text PDF

Pelizaeus-Merzbacher disease (PMD) is an untreatable and fatal leukodystrophy. In a model of PMD with perturbed blood-brain barrier integrity, cholesterol supplementation promotes myelin membrane growth. Here, we show that in contrast to the mouse model, dietary cholesterol in two PMD patients did not lead to a major advancement of hypomyelination, potentially because the intact blood-brain barrier precludes its entry into the CNS.

View Article and Find Full Text PDF

In this chapter, we describe protocols to study different aspects of oligodendrocytes and myelin using electron microscopy. First, we describe in detail how to prepare central nervous system tissue routinely by perfusion fixation of the animal and conventional embedding in Epon resin. Then, we explain how, with some modifications, chemically fixed tissue can be used for immunoelectron microscopy on cryosections.

View Article and Find Full Text PDF
Article Synopsis
  • Primary cultures of rodent brain cells are important for researching neurobiology at the molecular and cellular levels.
  • The chapter outlines techniques for purifying and culturing oligodendroglial cells from mouse brains during the perinatal period.
  • It also explains how to co-culture these oligodendrocytes with neurons to study their growth, maturity, and role in myelination.
View Article and Find Full Text PDF

CX3CR1-deficient microglia shows impaired signalling of the transcription factor NRF2: Implications in tauopathies.

Redox Biol

April 2019

Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain; Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Spain. Electronic address:

TAU protein aggregation is the main characteristic of neurodegenerative diseases known as tauopathies. Low-grade chronic inflammation is also another hallmark that indicates crosstalk between damaged neurons and glial cells. Previously, we have demonstrated that neurons overexpressing TAU release CX3CL1, which activates the transcription factor NRF2 signalling to limit over-activation in microglial cells in vitro and in vivo.

View Article and Find Full Text PDF

Recently, second harmonic generation (SHG) nanomaterials have been generated that are efficiently employed in the classical (NIR) and extended (NIR-II) near infrared windows using a multiphoton microscope. The aim was to test bismuth ferrite harmonic nanoparticles (BFO-HNPs) for their ability to monitor pulmonary macrophages in mice. BFO-loaded MH-S macrophages are given intratracheally to healthy mice or BFO-HNPs are intranasally instilled in mice with allergic airway inflammation and lung sections of up to 100 μM are prepared.

View Article and Find Full Text PDF

Repeated exposure to life stressors can overwhelm the body's capacity to restore homeostasis and result in severe negative consequences. Cannabinoid CB receptors are highly expressed in the Central Nervous System (CNS) and regulate both glucocorticoid signalling and neurotransmitter release. In rodents, WIN55212.

View Article and Find Full Text PDF

Single-molecule localization based super-resolution microscopy has revolutionized optical microscopy and routinely allows for resolving structural details down to a few nanometers. However, there exists a rather large discrepancy between lateral and axial localization accuracy, the latter typically three to five times worse than the former. Here, we use single-molecule metal-induced energy transfer (smMIET) to localize single molecules along the optical axis, and to measure their axial distance with an accuracy of 5 nm.

View Article and Find Full Text PDF

Persistent Expression of Serotonin Receptor 5b Alters Breathing Behavior in Male MeCP2 Knockout Mice.

Front Mol Neurosci

February 2018

DFG-Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany.

Mutations in the transcription factor methyl-CpG-binding protein 2 (MeCP2) cause the neurodevelopmental disorder Rett syndrome (RTT). Besides many other neurological problems, RTT patients show irregular breathing with recurrent apneas or breath-holdings. MeCP2-deficient mice, which recapitulate this breathing phenotype, show a dysregulated, persistent expression of G-protein-coupled serotonin receptor 5-ht () in the brainstem.

View Article and Find Full Text PDF

Introduction: Vulnerability to psychiatric manifestations is achieved by the influence of genetic and environment including stress and cannabis consumption. Here, we used a psychosocial stress model based on resident-intruder confrontations to study the brain corticostriatal-function, since deregulation of corticostriatal circuitries has been reported in many psychiatric disorders. CB receptors are widely expressed in the central nervous system and particularly, in both cortex and striatum brain structures.

View Article and Find Full Text PDF

Riluzole: a potential therapeutic intervention in human brain tumor stem-like cells.

Oncotarget

November 2017

The Translational Neurooncology Research Group, Department of Neurosurgery, University Medical Center Göttingen, University Göttingen, Göttingen, Germany.

A small subpopulation of tumor stem-like cells has the capacity to initiate tumors and mediate radio- and chemoresistance in diverse cancers hence also in glioblastoma (GBM). It has been reported that this capacity of tumor initiation in the brain is mainly dependent on the body's nutrient supply. This population of so-called brain tumor initiating or brain tumor stem-like cells (BTSCs) is able to extract nutrients like glucose with a higher affinity.

View Article and Find Full Text PDF

In neuroinflammatory disorders such as multiple sclerosis, the physiological function of the blood-brain barrier (BBB) is perturbed, particularly in demyelinating lesions and supposedly secondary to acute demyelinating pathology. Using the toxic non-inflammatory cuprizone model of demyelination, we demonstrate, however, that the onset of persistent BBB impairment precedes demyelination. In addition to a direct effect of cuprizone on endothelial cells, a plethora of inflammatory mediators, which are mainly of astroglial origin during the initial disease phase, likely contribute to the destabilization of endothelial barrier function in vivo.

View Article and Find Full Text PDF

Pharmacological targeting of GSK-3 and NRF2 provides neuroprotection in a preclinical model of tauopathy.

Redox Biol

April 2018

Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Madrid, Spain; Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain. Electronic address:

Tauopathies are a group of neurodegenerative disorders where TAU protein is presented as aggregates or is abnormally phosphorylated, leading to alterations of axonal transport, neuronal death and neuroinflammation. Currently, there is no treatment to slow progression of these diseases. Here, we have investigated whether dimethyl fumarate (DMF), an inducer of the transcription factor NRF2, could mitigate tauopathy in a mouse model.

View Article and Find Full Text PDF