35 results match your criteria: "Germany (V.M.L.); and University of Tuebingen[Affiliation]"

The 75-Year Anniversary of the Department of Physiology and Pharmacology at Karolinska Institutet-Examples of Recent Accomplishments and Future Perspectives.

Pharmacol Rev

October 2024

Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)

Karolinska Institutet is a medical university encompassing 21 departments distributed across three departmental or campus groups. Pharmacological research has a long and successful tradition at the institute with a multitude of seminal findings in the areas of neuronal control of vasodilatation, cardiovascular pharmacology, neuropsychopharmacology, receptor pharmacology, and pharmacogenomics that resulted in, among many other recognitions, two Nobel prizes in Physiology and Medicine, one in 1970 to Ulf von Euler for his discovery of the processes involved in storage, release, and inactivation of neurotransmitters and the other in 1982 to Sune Bergström and Bengt Samuelsson for their work on prostaglandins and the discovery of leukotrienes. Pharmacology at Karolinska Institutet has over the last decade been ranked globally among the top 10 according to the QS World University Ranking.

View Article and Find Full Text PDF

Incretin-based therapies are highly successful in combatting obesity and type 2 diabetes. Yet both activation and inhibition of the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) in combination with glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) activation have resulted in similar clinical outcomes, as demonstrated by the GIPR-GLP-1R co-agonist tirzepatide and AMG-133 (ref. ) combining GIPR antagonism with GLP-1R agonism.

View Article and Find Full Text PDF

Background: CYP2C8 is responsible for the metabolism of 5% of clinically prescribed drugs, including antimalarials, anti-cancer and anti-inflammatory drugs. Genetic variability is an important factor that influences CYP2C8 activity and modulates the pharmacokinetics, efficacy and safety of its substrates.

Results: We profiled the genetic landscape of CYP2C8 variability using data from 96 original studies and data repositories that included a total of 33,185 unrelated participants across 44 countries and 43 ethnic groups.

View Article and Find Full Text PDF

Comparison of Human Long-Term Liver Models for Clearance Prediction of Slowly Metabolized Compounds.

Drug Metab Dispos

May 2024

Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (L.C.P., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Darmstadt, Germany (L.C.P., K.G., C.P.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tuebingen, Tuebingen, Germany (V.M.L.)

The accurate prediction of human clearance is an important task during drug development. The proportion of low clearance compounds has increased in drug development pipelines across the industry since such compounds may be dosed in lower amounts and at lower frequency. These type of compounds present new challenges to in vitro systems used for clearance extrapolation.

View Article and Find Full Text PDF

Individualized Pharmacotherapy Utilizing Genetic Biomarkers and Novel In Vitro Systems As Predictive Tools for Optimal Drug Development and Treatment.

Drug Metab Dispos

May 2024

Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.I.-S., V.M.L.); Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.).

In the area of drug development and clinical pharmacotherapy, a profound understanding of the pharmacokinetics and potential adverse reactions associated with the drug under investigation is paramount. Essential to this endeavor is a comprehensive understanding about interindividual variations in absorption, distribution, metabolism, and excretion (ADME) genetics and the predictive capabilities of in vitro systems, shedding light on metabolite formation and the risk of adverse drug reactions (ADRs). Both the domains of pharmacogenomics and the advancement of in vitro systems are experiencing rapid expansion.

View Article and Find Full Text PDF
Article Synopsis
  • - Climate change and high population densities have increased the transmission of viruses like the Crimean-Congo haemorrhagic fever virus (CCHFV) to humans, highlighting a growing health concern.
  • - The study reveals that the Low Density Lipoprotein Receptor (LDLR) is crucial for CCHFV to enter cells, with a unique binding interaction that is not shared by other similar receptors.
  • - Mice without LDLR show delayed disease progression from CCHFV, and the presence of proteins like Apolipoprotein E (ApoE) on the virus has been documented, suggesting LDLR is key for future CCHFV treatments.
View Article and Find Full Text PDF

Dihydroartemisinin-piperaquine is efficacious for the treatment of uncomplicated malaria and its use is increasing globally. Despite the positive results in fighting malaria, inhibition of the Kv11.1 channel (hERG; encoded by the gene) by piperaquine has raised concerns about cardiac safety.

View Article and Find Full Text PDF

Neonatal hypoxia-ischemia (HI) is a major cause of perinatal death and long-term disabilities worldwide. Post-ischemic neuroinflammation plays a pivotal role in HI pathophysiology. In the present study, we investigated the temporal dynamics of microglia (CX3CR1) and infiltrating macrophages (CCR2) in the hippocampi of mice subjected to HI at postnatal day 9.

View Article and Find Full Text PDF

Consequences of Amyloid-β Deficiency for the Liver.

Adv Sci (Weinh)

May 2024

Department of Clinical Pharmacology, University Hospital of Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany.

The hepatic content of amyloid beta (Aβ) decreases drastically in human and rodent cirrhosis highlighting the importance of understanding the consequences of Aβ deficiency in the liver. This is especially relevant in view of recent advances in anti-Aβ therapies for Alzheimer's disease (AD). Here, it is shown that partial hepatic loss of Aβ in transgenic AD mice immunized with Aβ antibody 3D6 and its absence in amyloid precursor protein (APP) knockout mice (APP-KO), as well as in human liver spheroids with APP knockdown upregulates classical hallmarks of fibrosis, smooth muscle alpha-actin, and collagen type I.

View Article and Find Full Text PDF

Longitudinal monitoring of liver function in vivo is hindered by the lack of high-resolution non-invasive imaging techniques. Using the anterior chamber of the mouse eye as a transplantation site, we have established a platform for longitudinal in vivo imaging of liver spheroids at cellular resolution. Transplanted liver spheroids engraft on the iris, become vascularized and innervated, retain hepatocyte-specific and liver-like features and can be studied by in vivo confocal microscopy.

View Article and Find Full Text PDF

G protein-coupled receptors are important drug targets that engage and activate signaling transducers in multiple cellular compartments. Delineating therapeutic signaling from signaling associated with adverse events is an important step towards rational drug design. The glucagon-like peptide-1 receptor (GLP-1R) is a validated target for the treatment of diabetes and obesity, but drugs that target this receptor are a frequent cause of adverse events.

View Article and Find Full Text PDF

Genetic variants in drug targets and genes encoding factors involved in drug absorption, distribution, metabolism and excretion (ADME) can have pronounced impacts on drug pharmacokinetics, response, and toxicity. While the landscape of genetic variability at the level of single nucleotide variants (SNVs) has been extensively studied in these pharmacogenetic loci, their structural variation is only poorly understood. Thus, we systematically analyzed the genetic structural variability across 908 pharmacogenes (344 ADME genes and 564 drug targets) based on publicly available whole genome sequencing data from 10,847 unrelated individuals.

View Article and Find Full Text PDF

Human resident liver myeloid cells protect against metabolic stress in obesity.

Nat Metab

July 2023

Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.

Article Synopsis
  • Scientists studied special immune cells in the liver that help protect against problems caused by obesity.
  • They found that these helpful cells get fewer in number when people are obese.
  • The research suggests that trying to boost these protective cells could help fight against liver diseases linked to obesity.
View Article and Find Full Text PDF

Next-generation human adipose tissue culture methods.

Curr Opin Genet Dev

June 2023

Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, 171 64 Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden. Electronic address:

White adipocytes are highly specialized, lipid-storing cells. Their unique characteristics, including their large cell size and high buoyancy, have made adipocytes hard to study in vitro. Most traditional monolayered adipocyte culture models also poorly reflect the morphology and expression of their mature counterparts.

View Article and Find Full Text PDF

Calcium measurements in enzymatically dissociated or mechanically microdissected mouse primary skeletal muscle fibers.

STAR Protoc

April 2023

Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany. Electronic address:

Here, we provide a protocol for isolation of mouse primary skeletal muscle fibers using two alternative approaches-enzymatic dissociation or mechanical microdissection. We describe the procedures for surgical removal of muscle of interest and isolation of intact single-muscle fibers by either collagenase digestion or mechanical microdissection. We then detail intracellular calcium measurements by microinjecting or loading the isolated muscle fibers with membrane permeable calcium dyes.

View Article and Find Full Text PDF

Well-characterized small molecules are essential tools for studying the biology and therapeutic relevance of a target protein. However, many compounds reported in the literature and routinely studied in biomedical research lack the potency and selectivity required for mechanistic cellular studies on the function of a given protein. Furthermore, commercially available compounds often do not include useful tools developed by industry as part of their research and development efforts, as they frequently remain proprietary.

View Article and Find Full Text PDF

Cells rapidly lose their physiological phenotype upon disruption of their extracellular matrix (ECM)-intracellular cytoskeleton interactions. By comparing adult mouse skeletal muscle fibers, isolated either by mechanical dissection or by collagenase-induced ECM digestion, we investigated acute effects of ECM disruption on cellular and mitochondrial morphology, transcriptomic signatures, and Ca handling. RNA-sequencing showed striking differences in gene expression patterns between the two isolation methods with enzymatically dissociated fibers resembling myopathic phenotypes.

View Article and Find Full Text PDF

UHPLC-Orbitrap study of the first phase tacrine in vitro metabolites and related Alzheimer's drug candidates using human liver microsomes.

J Pharm Biomed Anal

February 2023

Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic. Electronic address:

Tacrine was the first drug used in the therapy of Alzheimer's disease (AD) and is one of the leading structures frequently pursued in the drug discovery of novel candidates for tackling AD. However, because tacrine has been withdrawn from the market due to its hepatotoxicity, ascribed to specific metabolites, concerns are high about the toxicity profile of newly developed compounds related to tacrine. From the point of view of drug safety, the formation of metabolites must be uncovered and analyzed.

View Article and Find Full Text PDF

Aberrant glucose homeostasis is the most common metabolic disturbance affecting one in ten adults worldwide. Prediabetic hyperglycemia due to dysfunctional interactions between different human tissues, including pancreas and liver, constitutes the largest risk factor for the development of type 2 diabetes. However, this early stage of metabolic disease has received relatively little attention.

View Article and Find Full Text PDF

Challenges and opportunities associated with rare-variant pharmacogenomics.

Trends Pharmacol Sci

October 2022

Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tübingen, Tübingen, Germany. Electronic address:

Recent advances in next-generation sequencing (NGS) have resulted in the identification of tens of thousands of rare pharmacogenetic variations with unknown functional effects. However, although such pharmacogenetic variations have been estimated to account for a considerable amount of the heritable variability in drug response and toxicity, accurate interpretation at the level of the individual patient remains challenging. We discuss emerging strategies and concepts to close this translational gap.

View Article and Find Full Text PDF

CYP2D6 and CYP2C19 are enzymes of essential significance for the pharmacokinetics of a multitude of commonly used antidepressants, antipsychotics, antiemetics, β-blockers, opioids, antiestrogen, antacids, etc. Polymorphisms in the respective genes are well established as resulting in functional differences, which in turn can impact safety and efficacy. Importantly, the prevalence of genetic and variability differs drastically between populations.

View Article and Find Full Text PDF

Background: One of the main hurdles of oncological therapy is the development of drug resistance. The ABC transporter gene family contributes majorly to cancer chemoresistance. However, effects of somatic expression of most ABC transporters on cancer outcomes remain largely unclear.

View Article and Find Full Text PDF

Statins are the first-line treatment for familial hypercholesterolemia (FH), but response is highly variable due to genetic and nongenetic factors. Here, we explored the association between response and genetic variability in 114 Brazilian adult FH patients. Specifically, a panel of 84 genes was analyzed by exon-targeted gene sequencing (ETGS), and the functional impact of variants in pharmacokinetic (PK) genes was assessed using an array of functionality prediction methods.

View Article and Find Full Text PDF