4 results match your criteria: "German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Germany.[Affiliation]"

Functional traits are proxies for plant physiology and performance, which do not only differ between species but also within species. In this work, we hypothesized that (a) with increasing precipitation, the percentage of focal species which significantly respond to changes in grazing intensity increases, while under dry conditions, climate-induced stress is so high that plant species hardly respond to any changes in grazing intensity and that (b) the magnitude with which species change their trait values in response to grazing, reflected by coefficients of variation (CVs), increases with increasing precipitation. Chosen plant traits were canopy height, plant width, specific leaf area (SLA), chlorophyll fluorescence, performance index, stomatal pore area index (SPI), and individual aboveground biomass of 15 species along a precipitation gradient with different grazing intensities in Mongolian rangelands.

View Article and Find Full Text PDF

Aim: Plant functional groups are widely used in community ecology and earth system modelling to describe trait variation within and across plant communities. However, this approach rests on the assumption that functional groups explain a large proportion of trait variation among species. We test whether four commonly used plant functional groups represent variation in six ecologically important plant traits.

View Article and Find Full Text PDF

Browsing of tree saplings by deer hampers forest regeneration in mixed forests across Europe and North America. It is well known that tree species are differentially affected by deer browsing, but little is known about how different facets of diversity, such as species richness, identity, and composition, affect browsing intensity at different spatial scales. Using forest inventory data from the Hainich National Park, a mixed deciduous forest in central Germany, we applied a hierarchical approach to model the browsing probability of patches (regional scale) as well as the species-specific proportion of saplings browsed within patches (patch scale).

View Article and Find Full Text PDF

Increased dispersal of individuals among discrete habitat patches should increase the average number of species present in each local habitat patch. However, experimental studies have found variable effects of dispersal on local species richness. Priority effects, predators, and habitat heterogeneity have been proposed as mechanisms that limit the effect of dispersal on species richness.

View Article and Find Full Text PDF