2 results match your criteria: "Geriatric ResearchEducation and Clinical Center[Affiliation]"

Regulation of adrenal and ovarian steroidogenesis by miR-132.

J Mol Endocrinol

October 2017

Geriatric ResearchEducation and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA

miR-132 is hormonally regulated in steroidogenic cells of the adrenal gland, ovary and testis. Here, we examined the potential role of miR-132 in the control of steroidogenesis. Transfection of Y1 adrenal cells with miR-132 increased mRNAs of 3β-HSD and 20α-HSD enzymes, which catalyze the sequential conversion of pregnenolone to progesterone to biologically inactive 20α-hydroxyprogesterone (20α-OHP).

View Article and Find Full Text PDF

p38 MAPK regulates steroidogenesis through transcriptional repression of STAR gene.

J Mol Endocrinol

August 2014

Geriatric ResearchEducation and Clinical Center (GRECC-182B), VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USADivision of EndocrinologyDivision of Gastroenterology and HepatologyStanford University, Stanford, California 94305, USADepartment of Obstetrics and GynecologyUniversity of South Florida College of Medicine, Tampa, Florida 33612, USAState Key Laboratory of Cellular Stress BiologySchool of Life Sciences, Xiamen University, Xiamen, Fujian 361005, ChinaProgram in Molecular MedicineUniversity of Massachusetts Medical School, Worcester, Massachusetts 01605, USAGeriatric ResearchEducation and Clinical Center (GRECC-182B), VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USADivision of EndocrinologyDivision of Gastroenterology and HepatologyStanford University, Stanford, California 94305, USADepartment of Obstetrics and GynecologyUniversity of South Florida College of Medicine, Tampa, Florida 33612, USAState Key Laboratory of Cellular Stress BiologySchool of Life Sciences, Xiamen University, Xiamen, Fujian 361005, ChinaProgram in Molecular MedicineUniversity of Massachusetts Medical School, Worcester, Massachusetts 01605, USA

STAR/StarD1, part of a protein complex, mediates the transport of cholesterol from the outer to inner mitochondrial membrane, which is the rate-limiting step for steroidogenesis, and where steroid hormone synthesis begins. Herein, we examined the role of oxidant-sensitive p38 MAPKs in the regulation of STAR gene transcription, using model steroidogenic cell lines. Our data indicate that oxidant activation of p38 MAPK exhibits a negative regulatory role in the induction of functional expression of STAR, as evidenced by enhanced induction of STAR (mRNA/protein) expression and increased steroidogenesis during pharmacological inhibition of p38 MAPK or in cells with increased transient overexpression of a dominant-negative (dn) form of p38 MAPKα or p38 MAPKβ.

View Article and Find Full Text PDF