3 results match your criteria: "Georgia (G.I.); Matsuyama Red Cross Hospital[Affiliation]"

The use of social media data, like Twitter, for biomedical research has been gradually increasing over the years. With the coronavirus disease 2019 (COVID-19) pandemic, researchers have turned to more non-traditional sources of clinical data to characterize the disease in near-real time, study the societal implications of interventions, as well as the sequelae that recovered COVID-19 cases present. However, manually curated social media datasets are difficult to come by due to the expensive costs of manual annotation and the efforts needed to identify the correct texts.

View Article and Find Full Text PDF

There has been a dramatic increase in the popularity of utilizing social media data for research purposes within the biomedical community. In PubMed alone, there have been nearly 2,500 publication entries since 2014 that deal with analyzing social media data from Twitter and Reddit. However, the vast majority of those works do not share their code or data for replicating their studies.

View Article and Find Full Text PDF

The usage of controlled biomedical vocabularies is the cornerstone that enables seamless interoperability when using a common data model across multiple data sites. The Observational Health Data Science and Informatics (OHDSI) initiative combines over 100 controlled vocabularies into its own. However, the OHDSI vocabulary is limited in the sense that it combines multiple terminologies and does not provide a direct way to link them outside of their own self-contained scope.

View Article and Find Full Text PDF