28 results match your criteria: "GeneSys Research Institute[Affiliation]"
Cancer Res
February 2014
Authors' Affiliation: Center of Cancer Systems Biology, Genesys Research Institute, Tufts University School of Medicine, Boston, Massachusetts.
Over the last several decades, improved awareness of the prevalence of carcinogens in the environment, along with a growing appreciation of the complexity of the carcinogenesis process, has shifted policy on cancer risk from one of strict avoidance of carcinogens to one of adherence to exposure limits deemed "safe" based on quantitative risk estimation. Meanwhile, given the mutagenic nature of most carcinogens, attention has gravitated to developing a genetic rationale for measuring and comparing risks. This focus has culminated in the now well-established multistage mutational paradigm, which holds that a stepwise sequence of mutations drives cell "initiation" and the subsequent "transformation" of an initiated cell into a cancer cell, and that, once created, a cancer cell will inevitably undergo "progression" to become overt disease.
View Article and Find Full Text PDFTheor Biol Med Model
June 2013
Center of Cancer Systems Biology, GeneSys Research Institute, Tufts University School of Medicine, Boston, MA 02142, USA.
Background: In this paper we propose a chemical physics mechanism for the initiation of the glycolytic switch commonly known as the Warburg hypothesis, whereby glycolytic activity terminating in lactate continues even in well-oxygenated cells. We show that this may result in cancer via mitotic failure, recasting the current conception of the Warburg effect as a metabolic dysregulation consequent to cancer, to a biophysical defect that may contribute to cancer initiation.
Model: Our model is based on analogs of thermodynamic concepts that tie non-equilibrium fluid dynamics ultimately to metabolic imbalance, disrupted microtubule dynamics, and finally, genomic instability, from which cancers can arise.
Cancer Res
June 2013
Center of Cancer Systems Biology, GeneSys Research Institute, Tufts University School of Medicine, Boston, MA 02135, USA.
Cancer in a host induces responses that increase the ability of the microenvironment to sustain the growing mass, for example, angiogenesis, but cancer cells can have varying sensitivities to these sustainability signals. Here, we show that these sensitivities are significant determinants of ultimate tumor fate, especially in response to treatments and immune interactions. We present a mathematical model of cancer-immune interactions that modifies generalized logistic growth with both immune-predation and immune-recruitment.
View Article and Find Full Text PDF