4 results match your criteria: "Gazipur Agricultural University[Affiliation]"

Molecular and Genomic Investigation Unveils Pseudomonas putida as an Emerging Multidrug-Resistant Pathogen Linked to Bovine Clinical Mastitis.

Microb Pathog

March 2025

Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Gazipur Agricultural University, Gazipur 1706, Bangladesh. Electronic address:

Pseudomonas putida is one of the emerging pathogens responsible causing mastitis in lactating animals. This study investigated the prevalence, antimicrobial resistance (AMR), genetic diversity and virulence factor genes (VFGs) to highlight the pathogenic potentials of P. putida strains isolated from milk, feces and farm soil of bovine clinical mastitis (CM).

View Article and Find Full Text PDF

Climate change is making droughts more frequent, which is a major problem for crop yield, especially for crops that are vulnerable to drought, such as common buckwheat (Fagopyrum esculentum). Drought stress affects negatively on physiological and biochemical processes of plants, leading to reduced yields. This study addresses the knowledge gap regarding effective strategies to mitigate drought-induced damage and enhance productivity in buckwheat.

View Article and Find Full Text PDF

The DfrA1 protein provides trimethoprim resistance in bacteria, especially Klebsiella pneumoniae and Escherichia coli, by modifying dihydrofolate reductase, which reduces the binding efficacy of the antibiotic. This study identified inhibitors of the trimethoprim-resistant DfrA1 protein through high-throughput computational screening and optimization of 3,601 newly synthesized chemical compounds from the ChemDiv database, aiming to discover potential drug candidates targeting DfrA1 in K. pneumoniae and E.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a global health burden, with Moraxella catarrhalis significantly contributing to acute exacerbations and increased healthcare challenges. This study aimed to identify potential drug candidates in Swertia chirayita, a traditional Himalayan medicinal plant, demonstrating efficacy against the ubiquitous surface protein A1 (UspA1) of M. catarrhalis through an in-silico computational approach.

View Article and Find Full Text PDF