214 results match your criteria: "GZA Hospital Sint-Augustinus & University of Antwerp[Affiliation]"

Recent reports have emphasized the clinical relevance of detecting AR-V7 in circulating tumor cells (CTCs). Our aim was to set up a validated multicenter pipeline to measure AR-V7 by quantitative RT-PCR (RT-qPCR) in RNA isolated from CellSearch-enriched CTCs to provide an AR-V7-positive or AR-V7-negative score in a clinically acceptable time range. CellSearch-enirched CTCs from patients with metastatic castration-resistant prostate cancer were characterized by RT-qPCR.

View Article and Find Full Text PDF

Immune Infiltration in Invasive Lobular Breast Cancer.

J Natl Cancer Inst

July 2018

J.C. Heuson Breast Cancer Translational Research Laboratory, Université Libre de Bruxelles, Institut Jules Bordet, Brussels, Belgium.

Background: Invasive lobular breast cancer (ILC) is the second most common histological subtype of breast cancer after invasive ductal cancer (IDC). Here, we aimed at evaluating the prevalence, levels, and composition of tumor-infiltrating lymphocytes (TILs) and their association with clinico-pathological and outcome variables in ILC, and to compare them with IDC.

Methods: We considered two patient series with TIL data: a multicentric retrospective series (n = 614) and the BIG 02-98 study (n = 149 ILC and 807 IDC).

View Article and Find Full Text PDF

Background: The outcome to treatment administered to patients with metastatic castration-resistant prostate cancer (mCRPC) greatly differs between individuals, underlining the need for biomarkers guiding treatment decision making.

Objective: To investigate the prognostic value of circulating tumor cell (CTC) enumeration and dynamics, in the context of second-line endocrine therapies (ie, abiraterone acetate or enzalutamide), irrespective of prior systemic therapies.

Design, Settings, And Participants: In a prospective, multicentre study blood samples for CTC enumeration were collected from patients with mCRPC at baseline (n = 174).

View Article and Find Full Text PDF

How glucose, glutamine and fatty acid metabolism shape blood and lymph vessel development.

Dev Biol

March 2019

Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven B-3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven B-3000, Belgium. Electronic address:

Recently, endothelial cell metabolism has emerged as an essential driver and regulator of both blood and lymph vessel development. Evidence rapidly builds that metabolism is not only necessary for endothelial cell function, but moreover controls several aspects of the (lymph)-angiogenic process. So far, the best-characterized metabolic pathways to have an impact on angiogenesis are glycolysis, fatty acid oxidation and glutamine metabolism.

View Article and Find Full Text PDF

Differential impact of RB status on E2F1 reprogramming in human cancer.

J Clin Invest

January 2018

Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

The tumor suppressor protein retinoblastoma (RB) is mechanistically linked to suppression of transcription factor E2F1-mediated cell cycle regulation. For multiple tumor types, loss of RB function is associated with poor clinical outcome. RB action is abrogated either by direct depletion or through inactivation of RB function; however, the basis for this selectivity is unknown.

View Article and Find Full Text PDF

Purpose Trabectedin is metabolized by the liver and has been associated with transient, noncumulative transaminase elevation. Two recent studies further characterize hepatic tolerability with trabectedin therapy: a phase 1 pharmacokinetic study (Study #1004; NCT01273493) in patients with advanced malignancies and hepatic impairment (HI), and a phase 3 study (Study #3007; NCT01343277) of trabectedin vs. dacarbazine in patients with advanced sarcomas and normal hepatic function.

View Article and Find Full Text PDF

Estrogen receptor mutations and splice variants determined in liquid biopsies from metastatic breast cancer patients.

Mol Oncol

January 2018

Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands.

Mutations and splice variants in the estrogen receptor (ER) gene, ESR1, may yield endocrine resistance in metastatic breast cancer (MBC) patients. These putative endocrine resistance markers are likely to emerge during treatment, and therefore, its detection in liquid biopsies, such as circulating tumor cells (CTCs) and cell-free DNA (cfDNA), is of great interest. This research aimed to determine whether ESR1 mutations and splice variants occur more frequently in CTCs of MBC patients progressing on endocrine treatment.

View Article and Find Full Text PDF

Purpose: Agents targeting programmed death receptor 1 (PD-1) or its ligand (PD-L1) have shown antitumor activity in the treatment of metastatic breast cancer (MBC). The aim of this study was to assess the activity of avelumab, a PD-L1 inhibitor, in patients with MBC.

Methods: In a phase 1 trial (JAVELIN Solid Tumor; NCT01772004), patients with MBC refractory to or progressing after standard-of-care therapy received avelumab intravenously 10 mg/kg every 2 weeks.

View Article and Find Full Text PDF

Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointestinal Tract Carcinomas, Non-Small Cell Lung Carcinoma and Mesothelioma, Endometrial and Ovarian Carcinomas, Squamous Cell Carcinoma of the Head and Neck, Genitourinary Carcinomas, and Primary Brain Tumors.

Adv Anat Pathol

November 2017

Departments of *Pathology §§§Medical Oncology, Peter MacCallum Cancer Centre, Melbourne †The Sir Peter MacCallum Department of Oncology Departments of **Pathology ∥∥Medicine, University of Melbourne ¶¶Department of Anatomical Pathology, Royal Melbourne Hospital, Parkville #Department of Anatomical Pathology, St Vincent's Hospital Melbourne, Fitzroy ††Department of Medical Oncology, Austin Health ‡‡Olivia Newton-John Cancer Research Institute, Heidelberg §§School of Cancer Medicine, La Trobe University, Bundoora §§§§§Centre for Clinical Research and School of Medicine, The University of Queensland ∥∥∥∥∥Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane §§§§§§§§§§The Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst ∥∥∥∥∥∥∥∥∥∥Australian Clinical Labs, Bella Vista ‡‡‡‡‡‡‡‡‡‡‡‡Directorate of Surgical Pathology, SA Pathology §§§§§§§§§§§§Discipline of Medicine, Adelaide University, Adelaide, Australia ***********Department of Surgical Oncology, Netherlands Cancer Institute †††††††††††††Department of Pathology ##Divisions of Diagnostic Oncology & Molecular Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands ###Université Paris-Est ****INSERM, UMR 955 ††††Département de pathologie, APHP, Hôpital Henri-Mondor, Créteil ∥∥∥∥∥∥∥∥∥Service de Biostatistique et d'Epidémiologie, Gustave Roussy, CESP, Inserm U1018, Université-Paris Sud, Université Paris-Saclay ¶¶¶¶¶¶¶¶¶¶INSERM Unit U981, and Department of Medical Oncology, Gustave Roussy, Villejuif ##########Faculté de Médecine, Université Paris Sud, Kremlin-Bicêtre †††††††Department of Surgical Pathology and Biopathology, Jean Perrin Comprehensive Cancer Centre ‡‡‡‡‡‡‡University of Auvergne UMR1240, Clermont-Ferrand, France ‡‡‡‡Department of Medicine, Clinical Division of Oncology §§§§Institute of Neurology, Comprehensive Cancer Centre Vienna, Medical University of Vienna, Vienna ††††††††††††††Institute of Pathology, Medical University of Graz, Austria ∥∥∥∥European Institute of Oncology ¶¶¶¶School of Medicine ######Department of Pathology, Istituto Europeo di Oncologia, University of Milan, Milan ¶¶¶¶¶¶¶¶¶¶¶¶¶Department of Surgery, Oncology and Gastroenterology, University of Padova #############Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy †††††Molecular Oncology Group, Vall d'Hebron Institute of Oncology, Barcelona †††††††††††Pathology Department, IIS-Fundacion Jimenez Diaz, UAM, Madrid, Spain §Department of Pathology and TCRU, GZA ¶¶¶Department of Pathology, GZA Ziekenhuizen, Antwerp ∥Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven ‡‡‡‡‡‡‡‡‡‡‡Department of Pathology, University Hospital Leuven, Leuven, Belgium ¶Department of Pathology, AZ Klina, Brasschaat ††††††Department of Pathology, GZA Ziekenhuizen, Sint-Augustinus, Wilrijk ∥∥∥Molecular Immunology Unit ‡‡‡‡‡‡Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles ‡Breast Cancer Translational Research Laboratory/Breast International Group, Institut Jules Bordet **************European Organisation for Research and Treatment of Cancer (EORTC) Headquarters *******Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium §§§§§§§Department of Surgery, Kansai Medical School, Hirakata, Japan #######Severance Biomedical Science Institute and Department of Medical Oncology, Yonsei University College of Medicine, Seoul, South Korea ∥∥∥∥∥∥∥∥Tumor Pathology Department, Maria Sklodowska-Curie Memorial Cancer Center ¶¶¶¶¶¶¶¶Institute of Oncology, Gliwice Branch, Gliwice, Poland ‡‡‡‡‡‡‡‡‡‡‡‡‡‡Pathology and Tissue Analytics, Roche Innovation Centre Munich, Penzberg †††††††††Institute of Pathology, Charité Universitätsmedizin Berlin ‡‡‡‡‡‡‡‡‡VMscope GmbH, Berlin ¶¶¶¶¶¶¶¶¶German Breast Group GmbH, Neu-Isenburg, Germany **********Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency ††††††††††Department of Biochemistry and Microbiology, University of Victoria, Victoria Departments of ‡‡‡‡‡‡‡‡‡‡Medical Genetics #########Pathology and Laboratory Medicine ¶¶¶¶¶¶¶¶¶¶¶Department of Pathology and Laboratory Medicine, Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, BC ###########Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Canada §§§§§§§§§§§Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Doha, Qatar ‡‡‡‡‡‡‡‡Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center §§§§§§§§Warren Alpert Medical School of Brown University, Providence ¶¶¶¶¶National Surgical Adjuvant Breast and Bowel Project Operations Center/NRG Oncology, Pittsburgh, PA †††Breast Cancer Research Program, Vanderbilt Ingram Cancer Center, Vanderbilt University Departments of ‡‡‡Pathology, Microbiology and Immunology ########Department of Medicine, Vanderbilt University Medical Centre *********Vanderbilt Ingram Cancer Center, Nashville §§§§§§§§§Department of Pathology, Yale University School of Medicine, New Haven ∥∥∥∥∥∥∥∥∥∥∥Department of Oncology, Montefiore Medical Centre, Albert Einstein College of Medicine ∥∥∥∥∥∥∥Montefiore Medical Center ¶¶¶¶¶¶¶The Albert Einstein College of Medicine, Bronx, NY ********Department of Pathology, Brigham and Women's Hospital #####Cancer Research Institute and Department of Pathology, Beth Israel Deaconess Cancer Center ******Harvard Medical School ¶¶¶¶¶¶¶¶¶¶¶¶Division of Hematology-Oncology, Beth Israel Deaconess Medical Center ††††††††Department of Cancer Biology ‡‡‡‡‡‡‡‡‡‡‡‡‡Dana-Farber Cancer Institute, Boston, MA ∥∥∥∥∥∥∥∥∥∥∥∥∥Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO ‡‡‡‡‡Department of Cancer Biology, Mayo Clinic, Jacksonville, FL ∥∥∥∥∥∥Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN ¶¶¶¶¶¶Cancer Immunotherapy Trials Network, Central Laboratory and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA ††††††††††††Department of Pathology, New York University Langone Medical Centre ############New York University Medical School *************Perlmutter Cancer Center §§§§§§§§§§§§§Pulmonary Pathology, New York University Center for Biospecimen Research and Development, New York University ***************Department of Pathology, Memorial Sloan-Kettering Cancer Center ####Departments of Radiation Oncology and Pathology, Weill Cornell Medicine, New York, NY *****Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX ∥∥∥∥∥∥∥∥∥∥∥∥Pathology Department, Stanford University Medical Centre, Stanford ∥∥∥∥∥∥∥∥∥∥∥∥∥∥Department of Pathology, Stanford University, Palo Alto ***Department of Pathology, School of Medicine, University of California, San Diego §§§§§§§§§§§§§§Research Pathology, Genentech Inc., South San Francisco, CA *************Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda ¶¶¶¶¶¶¶¶¶¶¶¶¶¶Translational Sciences, MedImmune, Gaithersberg, MD §§§§§§Academic Medical Innovation, Novartis Pharmaceuticals Corporation, East Hanover ##############Translational Medicine, Merck & Co. Inc., Kenilworth, NJ.

Assessment of the immune response to tumors is growing in importance as the prognostic implications of this response are increasingly recognized, and as immunotherapies are evaluated and implemented in different tumor types. However, many different approaches can be used to assess and describe the immune response, which limits efforts at implementation as a routine clinical biomarker. In part 1 of this review, we have proposed a standardized methodology to assess tumor-infiltrating lymphocytes (TILs) in solid tumors, based on the International Immuno-Oncology Biomarkers Working Group guidelines for invasive breast carcinoma.

View Article and Find Full Text PDF

Assessing Tumor-infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method From the International Immunooncology Biomarkers Working Group: Part 1: Assessing the Host Immune Response, TILs in Invasive Breast Carcinoma and Ductal Carcinoma In Situ, Metastatic Tumor Deposits and Areas for Further Research.

Adv Anat Pathol

September 2017

Departments of *Pathology §§§Medical Oncology, Peter MacCallum Cancer Centre, Melbourne †The Sir Peter MacCallum Department of Oncology Departments of **Pathology ∥∥Medicine, University of Melbourne ¶¶Department of Anatomical Pathology, Royal Melbourne Hospital, Parkville #Department of Anatomical Pathology, St Vincent's Hospital Melbourne, Fitzroy ††Department of Medical Oncology, Austin Health ‡‡Olivia Newton-John Cancer Research Institute, Heidelberg §§School of Cancer Medicine, La Trobe University, Bundoora §§§§§Centre for Clinical Research and School of Medicine, The University of Queensland ∥∥∥∥∥Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane §§§§§§§§§§The Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst ∥∥∥∥∥∥∥∥∥∥Australian Clinical Labs, Bella Vista ‡‡‡‡‡‡‡‡‡‡‡‡Directorate of Surgical Pathology, SA Pathology §§§§§§§§§§§§Discipline of Medicine, Adelaide University, Adelaide, Australia ***********Department of Surgical Oncology, Netherlands Cancer Institute †††††††††††††Department of Pathology ##Divisions of Diagnostic Oncology & Molecular Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands ###Université Paris-Est ****INSERM, UMR 955 ††††Département de pathologie, APHP, Hôpital Henri-Mondor, Créteil ∥∥∥∥∥∥∥∥∥Service de Biostatistique et d'Epidémiologie, Gustave Roussy, CESP, Inserm U1018, Université-Paris Sud, Université Paris-Saclay ¶¶¶¶¶¶¶¶¶¶INSERM Unit U981, and Department of Medical Oncology, Gustave Roussy, Villejuif ##########Faculté de Médecine, Université Paris Sud, Kremlin-Bicêtre †††††††Department of Surgical Pathology and Biopathology, Jean Perrin Comprehensive Cancer Centre ‡‡‡‡‡‡‡University of Auvergne UMR1240, Clermont-Ferrand, France ‡‡‡‡Department of Medicine, Clinical Division of Oncology §§§§Institute of Neurology, Comprehensive Cancer Centre Vienna, Medical University of Vienna, Vienna ††††††††††††††Institute of Pathology, Medical University of Graz, Austria ∥∥∥∥European Institute of Oncology ¶¶¶¶School of Medicine ######Department of Pathology, Istituto Europeo di Oncologia, University of Milan, Milan ¶¶¶¶¶¶¶¶¶¶¶¶¶Department of Surgery, Oncology and Gastroenterology, University of Padova #############Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy †††††Molecular Oncology Group, Vall d'Hebron Institute of Oncology, Barcelona †††††††††††Pathology Department, IIS-Fundacion Jimenez Diaz, UAM, Madrid, Spain §Department of Pathology and TCRU, GZA ¶¶¶Department of Pathology, GZA Ziekenhuizen, Antwerp ∥Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven ‡‡‡‡‡‡‡‡‡‡‡Department of Pathology, University Hospital Leuven, Leuven, Belgium ¶Department of Pathology, AZ Klina, Brasschaat ††††††Department of Pathology, GZA Ziekenhuizen, Sint-Augustinus, Wilrijk ∥∥∥Molecular Immunology Unit ‡‡‡‡‡‡Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles ‡Breast Cancer Translational Research Laboratory/Breast International Group, Institut Jules Bordet **************European Organisation for Research and Treatment of Cancer (EORTC) Headquarters *******Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium §§§§§§§Department of Surgery, Kansai Medical School, Hirakata, Japan #######Severance Biomedical Science Institute and Department of Medical Oncology, Yonsei University College of Medicine, Seoul, South Korea ∥∥∥∥∥∥∥∥Tumor Pathology Department, Maria Sklodowska-Curie Memorial Cancer Center ¶¶¶¶¶¶¶¶Institute of Oncology, Gliwice Branch, Gliwice, Poland ‡‡‡‡‡‡‡‡‡‡‡‡‡‡Pathology and Tissue Analytics, Roche Innovation Centre Munich, Penzberg †††††††††Institute of Pathology, Charité Universitätsmedizin Berlin ‡‡‡‡‡‡‡‡‡VMscope GmbH, Berlin ¶¶¶¶¶¶¶¶¶German Breast Group GmbH, Neu-Isenburg, Germany **********Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency ††††††††††Department of Biochemistry and Microbiology, University of Victoria, Victoria Departments of ‡‡‡‡‡‡‡‡‡‡Medical Genetics #########Pathology and Laboratory Medicine ¶¶¶¶¶¶¶¶¶¶¶Department of Pathology and Laboratory Medicine, Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, BC ###########Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Canada §§§§§§§§§§§Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Doha, Qatar ‡‡‡‡‡‡‡‡Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center §§§§§§§§Warren Alpert Medical School of Brown University, Providence ¶¶¶¶¶National Surgical Adjuvant Breast and Bowel Project Operations Center/NRG Oncology, Pittsburgh, PA †††Breast Cancer Research Program, Vanderbilt Ingram Cancer Center, Vanderbilt University Departments of ‡‡‡Pathology, Microbiology and Immunology ########Department of Medicine, Vanderbilt University Medical Centre *********Vanderbilt Ingram Cancer Center, Nashville §§§§§§§§§Department of Pathology, Yale University School of Medicine, New Haven ∥∥∥∥∥∥∥∥∥∥∥Department of Oncology, Montefiore Medical Centre, Albert Einstein College of Medicine ∥∥∥∥∥∥∥Montefiore Medical Center ¶¶¶¶¶¶¶The Albert Einstein College of Medicine, Bronx, NY ********Department of Pathology, Brigham and Women's Hospital #####Cancer Research Institute and Department of Pathology, Beth Israel Deaconess Cancer Center ******Harvard Medical School ¶¶¶¶¶¶¶¶¶¶¶¶Division of Hematology-Oncology, Beth Israel Deaconess Medical Center ††††††††Department of Cancer Biology ‡‡‡‡‡‡‡‡‡‡‡‡‡Dana-Farber Cancer Institute, Boston, MA ∥∥∥∥∥∥∥∥∥∥∥∥∥Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO ‡‡‡‡‡Department of Cancer Biology, Mayo Clinic, Jacksonville, FL ∥∥∥∥∥∥Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN ¶¶¶¶¶¶Cancer Immunotherapy Trials Network, Central Laboratory and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA ††††††††††††Department of Pathology, New York University Langone Medical Centre ############New York University Medical School *************Perlmutter Cancer Center §§§§§§§§§§§§§Pulmonary Pathology, New York University Center for Biospecimen Research and Development, New York University ***************Department of Pathology, Memorial Sloan-Kettering Cancer Center ####Departments of Radiation Oncology and Pathology, Weill Cornell Medicine, New York, NY *****Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX ∥∥∥∥∥∥∥∥∥∥∥∥Pathology Department, Stanford University Medical Centre, Stanford ∥∥∥∥∥∥∥∥∥∥∥∥∥∥Department of Pathology, Stanford University, Palo Alto ***Department of Pathology, School of Medicine, University of California, San Diego §§§§§§§§§§§§§§Research Pathology, Genentech Inc., South San Francisco, CA *************Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda ¶¶¶¶¶¶¶¶¶¶¶¶¶¶Translational Sciences, MedImmune, Gaithersberg, MD §§§§§§Academic Medical Innovation, Novartis Pharmaceuticals Corporation, East Hanover ##############Translational Medicine, Merck & Co. Inc., Kenilworth, NJ.

Assessment of tumor-infiltrating lymphocytes (TILs) in histopathologic specimens can provide important prognostic information in diverse solid tumor types, and may also be of value in predicting response to treatments. However, implementation as a routine clinical biomarker has not yet been achieved. As successful use of immune checkpoint inhibitors and other forms of immunotherapy become a clinical reality, the need for widely applicable, accessible, and reliable immunooncology biomarkers is clear.

View Article and Find Full Text PDF

Introduction: To compare the pre- and post-operative Gleason scores (GS) in patients with localized prostate cancer treated with robot-assisted laparoscopic radical prostatectomy.

Materials And Methods: A single center, retrospective comparison between pre- and post-operative GS. Age, prostate volume, PSA, number of biopsies, number of positive cores, biopsy GS, cTNM, final pathology GS and pTNM of 286 patients were retrieved.

View Article and Find Full Text PDF

Study Design: Cross-sectional study.

Objective: The goal of this study is to translate the English version of the Modified Low Back Pain Disability Questionnaire (MDQ) into a Dutch version and investigate its clinimetric properties for patients with nonspecific chronic low back pain (CLBP).

Summary Of Background Data: Fritz et al (2001) developed a modified version of the Oswestry Disability Questionnaire (ODI) to assess functional status and named it the MDQ.

View Article and Find Full Text PDF

Study Objective: The aim of this clinical trial was to test the hypothesis whether adding the pectoral nerves (Pecs) block type II to the anesthetic procedure reduces opioid consumption during and after breast surgery.

Design: A prospective randomized double blind placebo-controlled study.

Setting: A secondary hospital.

View Article and Find Full Text PDF

The MO-meatocanalplasty: a modification of the M-meatoplasty to address the superior quadrants and the bony canal.

Eur Arch Otorhinolaryngol

September 2017

Department of ENT-HNS, European Institute for Otorhinolaryngology-Head and Neck Surgery, Sint Augustinus Hospital, GZA, Oosterveldlaan 24, 2610, Antwerp, Belgium.

The meatoplasty of the external auditory canal is a frequently performed otologic procedure in recurrent otitis externa, eczema or frequent accumulation of cerumen due to a narrow meatus of the external ear canal. Numerous surgical techniques have been described. The M-meatoplasty described by Mirck for addressing the external meatus is widely used.

View Article and Find Full Text PDF

Association of Gestational Weight Gain With Maternal and Infant Outcomes: A Systematic Review and Meta-analysis.

JAMA

June 2017

Monash Centre for Health Research and Implementation, Monash University, Victoria, Australia2Monash Diabetes and Endocrine Units, Monash Health, Victoria, Australia.

Importance: Body mass index (BMI) and gestational weight gain are increasing globally. In 2009, the Institute of Medicine (IOM) provided specific recommendations regarding the ideal gestational weight gain. However, the association between gestational weight gain consistent with theIOM guidelines and pregnancy outcomes is unclear.

View Article and Find Full Text PDF

How to Cross the Lymphatic Fence: Lessons From Solute Transport.

Circ Res

April 2017

From the Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Belgium (J.K., L.-A.T., V.G., P.C.); Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Vesalius Research Center, Leuven, Belgium (J.K., L.-A.T., V.G., P.C.); GZA Hospitals Sint-Augustinus, Wilrijk, Belgium (L.-A.T.); and Center for Oncological Research, University of Antwerp, Belgium (L.-A.T.).

View Article and Find Full Text PDF

Measuring the Dysphonia Severity Index (DSI) in the Program Praat.

J Voice

September 2017

Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium.

Background: The original Dysphonia Severity Index (ie, DSI) weighs and combines four voice markers in a single number to size dysphonia gradation in the clinic: percent jitter (from Multi-Dimensional Voice Program; KayPENTAX Corp., Montvale, NJ), softest intensity and highest fundamental frequency (both from Voice Range Profile; KayPENTAX Corp.), and maximum phonation time.

View Article and Find Full Text PDF

Perforator free flaps in head and neck reconstruction: a single-center low-volume experience.

Oral Surg Oral Med Oral Pathol Oral Radiol

April 2017

Department of Oral and Maxillofacial Surgery, ZNA Middelheim, Antwerp, Belgium.

Objective: The aim of this article is to investigate the results of free-flap reconstructions in the head and neck area in a secondary low-volume institution and compare these with the literature.

Study Design: A retrospective study was performed of all patients who underwent free-flap reconstructive surgery in our institution from January 9, 2011, to July 12, 2015, by one young surgeon in a one-team approach. The types of flaps applied, defect sites, pathology, anastomotic details, success and complication rates, lengths of stay, and patients' ages and comorbidities were analyzed.

View Article and Find Full Text PDF

Background And Purpose: Dynamic Wave Arc (DWA) is a system-specific noncoplanar arc technique that combines synchronized gantry-ring rotation with D-MLC optimization. This paper presents the clinical workflow, quality assurance program, and reports the geometric and dosimetric results of the first patient cohort treated with DWA.

Methods And Materials: The RayStation TPS was clinically integrated on the Vero SBRT platform for DWA treatments.

View Article and Find Full Text PDF

Background: Expression of the androgen receptor splice variant 7 (AR-V7) is associated with poor response to second-line endocrine therapy in castration-resistant prostate cancer (CRPC). However, a large fraction of nonresponding patients are AR-V7-negative.

Objective: To investigate if a comprehensive liquid biopsy-based AR profile may improve patient stratification in the context of second-line endocrine therapy.

View Article and Find Full Text PDF

Identifying genetic biomarkers of synthetic lethal drug sensitivity effects provides one approach to the development of targeted cancer therapies. Mutations in ARID1A represent one of the most common molecular alterations in human cancer, but therapeutic approaches that target these defects are not yet clinically available. We demonstrate that defects in ARID1A sensitize tumour cells to clinical inhibitors of the DNA damage checkpoint kinase, ATR, both in vitro and in vivo.

View Article and Find Full Text PDF

Prognostic Impact of HER2 and ER Status of Circulating Tumor Cells in Metastatic Breast Cancer Patients with a HER2-Negative Primary Tumor.

Neoplasia

November 2016

Erasmus MC Cancer Institute, Erasmus University Medical Center, Department of Medical Oncology and Cancer Genomics Netherlands, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.

Background: Preclinical and clinical studies have reported that human epidermal growth factor receptor 2 (HER2) overexpression yields resistance to endocrine therapies. Here the prevalence and prognostic impact of HER2-positive circulating tumor cells (CTCs) were investigated retrospectively in metastatic breast cancer (MBC) patients with a HER2-negative primary tumor receiving endocrine therapy. Additionally, the prevalence and prognostic significance of HER2-positive CTCs were explored in a chemotherapy cohort, as well as the prognostic impact of the estrogen receptor (ER) CTC status in both cohorts.

View Article and Find Full Text PDF

Background: Identification of specific risk groups for recurrence after surgery for isolated colorectal liver metastases (CRLM) remains challenging due to the heterogeneity of the disease. Classical clinicopathologic parameters have limited prognostic value. The aim of this study was to identify a gene expression signature measured in CRLM discriminating early from late recurrence after partial hepatectomy.

View Article and Find Full Text PDF

Mobile Communication Devices, Ambient Noise, and Acoustic Voice Measures.

J Voice

March 2017

Department of Otorhinolaryngology and Head and Neck Surgery, European Institute of ORL, Sint-Augustinus General Hospital, Antwerp, Belgium.

Objectives: The ability to move with mobile communication devices (MCDs; ie, smartphones and tablet computers) may induce differences in microphone-to-mouth positioning and use in noise-packed environments, and thus influence reliability of acoustic voice measurements. This study investigated differences in various acoustic voice measures between six recording equipments in backgrounds with low and increasing noise levels.

Methods: One chain of continuous speech and sustained vowel from 50 subjects with voice disorders (all separated by silence intervals) was radiated and re-recorded in an anechoic chamber with five MCDs and one high-quality recording system.

View Article and Find Full Text PDF

A recent comprehensive whole genome analysis of a large breast cancer cohort was used to link known and novel drivers and substitution signatures to the transcriptome of 266 cases. Here, we validate that subtype-specific aberrations show concordant expression changes for, for example, TP53, PIK3CA, PTEN, CCND1 and CDH1. We find that CCND3 expression levels do not correlate with amplification, while increased GATA3 expression in mutant GATA3 cancers suggests GATA3 is an oncogene.

View Article and Find Full Text PDF