2 results match your criteria: "G. D'Annunzio University of Chieti School of Medicine[Affiliation]"

Arachidonic acid metabolism plays an important role in acute ischemic syndromes affecting the coronary or cerebrovascular territory, as reflected by biochemical measurements of eicosanoid biosynthesis and the results of inhibitor trials in these settings. Two cyclooxygenase (COX)-isozymes have been characterized, COX-1 and COX-2, that differ in terms of regulatory mechanisms of expression, tissue distribution, substrate specificity, preferential coupling to upstream and downstream enzymes, and susceptibility to inhibition by the extremely heterogeneous class of COX-inhibitors. Although the role of platelet COX-1 in acute coronary syndromes and ischemic stroke is firmly established through approximately 20 years of thromboxane metabolite measurements and aspirin trials, the role of COX-2 expression and inhibition in atherothrombosis is substantially uncertain, because the enzyme was first characterized in 1991 and selective COX-2 inhibitors became commercially available only in 1998.

View Article and Find Full Text PDF

Background: We studied the concentration dependence of the inhibitory effects of cortisol, 6-methylprednisolone, and dexamethasone on cyclooxygenase-2 (COX-2) expression and activity in human monocytes in response to lipopolysaccharide (LPS) in vitro. Moreover, we characterized the time and dose dependence of the inhibitory effects of 6-methylprednisolone, administered to healthy subjects, on LPS-inducible prostaglandin E2 (PGE2) biosynthesis in whole blood ex vivo.

Methods: Heparinized whole-blood samples obtained from healthy subjects and patients with rheumatoid arthritis were incubated with LPS (10 microg/ml) for 24 hours at 37 degrees C, and PGE2 was measured in plasma as an index of monocyte COX-2 activity.

View Article and Find Full Text PDF