8 results match your criteria: "From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry[Affiliation]"
J Biol Chem
February 2017
From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10,117997 Moscow, Russia,
The transient receptor potential ankyrin-repeat 1 (TRPA1) is an important player in pain and inflammatory pathways. It is a promising target for novel drug development for the treatment of a number of pathological states. A novel peptide producing a significant potentiating effect on allyl isothiocyanate- and diclofenac-induced currents of TRPA1 was isolated from the venom of sea anemone It is a 35-amino acid peptide cross-linked by two disulfide bridges named τ-AnmTX Ms 9a-1 (short name Ms 9a-1) according to a structure similar to other sea anemone peptides belonging to structural group 9a.
View Article and Find Full Text PDFMol Cell Proteomics
July 2016
From the ‡Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str., 16/10, Moscow 117997, Russian Federation; §Moscow Institute of Physics and Technology, Institutskiy pereulok 9, Dolgoprudny 141700, Russian Federation; ‖Research Institute of Physical Chemical Medicine, Malaya Pirogovskaya str., 1a, Moscow 119435, Russian Federation.
Acute inflammatory demyelinating polyneuropathy (AIDP) - the main form of Guillain-Barre syndrome-is a rare and severe disorder of the peripheral nervous system with an unknown etiology. One of the hallmarks of the AIDP pathogenesis is a significantly elevated cerebrospinal fluid (CSF) protein level. In this paper CSF peptidome and proteome in AIDP were analyzed and compared with multiple sclerosis and control patients.
View Article and Find Full Text PDFJ Biol Chem
June 2016
Neurodegeneration Unit, Unidad Funcional de Investigación de Enfermedades Crónicas-Instituto de Salud Carlos III, Crta Majadahonda a Pozuelo km.2 Majadahonda, Madrid 28220, Spain
Dimerization of single span transmembrane receptors underlies their mechanism of activation. p75 neurotrophin receptor plays an important role in the nervous system, but the understanding of p75 activation mechanism is still incomplete. The transmembrane (TM) domain of p75 stabilizes the receptor dimers through a disulfide bond, essential for the NGF signaling.
View Article and Find Full Text PDFJ Biol Chem
September 2015
From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia, the Lomonosov Moscow State University, 119991 Moscow, Russia.
Weak toxin from Naja kaouthia (WTX) belongs to the group of nonconventional "three-finger" snake neurotoxins. It irreversibly inhibits nicotinic acetylcholine receptors and allosterically interacts with muscarinic acetylcholine receptors (mAChRs). Using site-directed mutagenesis, NMR spectroscopy, and computer modeling, we investigated the recombinant mutant WTX analogue (rWTX) which, compared with the native toxin, has an additional N-terminal methionine residue.
View Article and Find Full Text PDFJ Biol Chem
September 2015
From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia,
Ionotropic receptors of γ-aminobutyric acid (GABAAR) regulate neuronal inhibition and are targeted by benzodiazepines and general anesthetics. We show that a fluorescent derivative of α-cobratoxin (α-Ctx), belonging to the family of three-finger toxins from snake venoms, specifically stained the α1β3γ2 receptor; and at 10 μm α-Ctx completely blocked GABA-induced currents in this receptor expressed in Xenopus oocytes (IC50 = 236 nm) and less potently inhibited α1β2γ2 ≈ α2β2γ2 > α5β2γ2 > α2β3γ2 and α1β3δ GABAARs. The α1β3γ2 receptor was also inhibited by some other three-finger toxins, long α-neurotoxin Ls III and nonconventional toxin WTX.
View Article and Find Full Text PDFJ Biol Chem
May 2015
From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
The lesser Asian scorpion Mesobuthus eupeus (Buthidae) is one of the most widely spread and dispersed species of the Mesobuthus genus, and its venom is actively studied. Nevertheless, a considerable amount of active compounds is still under-investigated due to the high complexity of this venom. Here, we report a comprehensive analysis of putative potassium channel toxins (KTxs) from the cDNA library of M.
View Article and Find Full Text PDFMol Cell Proteomics
December 2014
From the ‡Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str. 16/10, Moscow 117997, Russian Federation; **Research Institute of Physical Chemical Medicine, Malaya Pirogovskaya str., 1a, Moscow 119435, Russian Federation; Kazan Federal University, Kremlyovskaya str. 18, Kazan 420008, Russian Federation.
Ovarian cancer ascites is a native medium for cancer cells that allows investigation of their secretome in a natural environment. This medium is of interest as a promising source of potential biomarkers, and also as a medium for cell-cell communication. The aim of this study was to elucidate specific features of the malignant ascites metabolome and proteome.
View Article and Find Full Text PDFJ Biol Chem
June 2014
From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow V-437, Russia, the Institute of Gene Biology, Russian Academy of Sciences, 117334 Moscow, Russia, the Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia, and
The vast majority of cellular proteins are degraded by the 26S proteasome after their ubiquitination. Here, we report that the major component of the myelin multilayered membrane sheath, myelin basic protein (MBP), is hydrolyzed by the 26S proteasome in a ubiquitin-independent manner both in vitro and in mammalian cells. As a proteasomal substrate, MBP reveals a distinct and physiologically relevant concentration range for ubiquitin-independent proteolysis.
View Article and Find Full Text PDF