10 results match your criteria: "From the Feil Family Brain and Mind Research Institute[Affiliation]"

Endothelium-Macrophage Crosstalk Mediates Blood-Brain Barrier Dysfunction in Hypertension.

Hypertension

September 2020

From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.).

Hypertension is a leading cause of stroke and dementia, effects attributed to disrupting delivery of blood flow to the brain. Hypertension also alters the blood-brain barrier (BBB), a critical component of brain health. Although endothelial cells are ultimately responsible for the BBB, the development and maintenance of the barrier properties depend on the interaction with other vascular-associated cells.

View Article and Find Full Text PDF

Background and Purpose- Commensal gut bacteria have a profound impact on stroke pathophysiology. Here, we investigated whether modification of the microbiota influences acute and long-term outcome in mice subjected to stroke. Methods- C57BL/6 male mice received a cocktail of antibiotics or single antibiotic.

View Article and Find Full Text PDF

Hypertension has emerged as a leading cause of age-related cognitive impairment. Long known to be associated with dementia caused by vascular factors, hypertension has more recently been linked also to Alzheimer disease-the major cause of dementia in older people. Thus, although midlife hypertension is a risk factor for late-life dementia, hypertension may also promote the neurodegenerative pathology underlying Alzheimer disease.

View Article and Find Full Text PDF

Background And Purpose: Ischemic brain injury is characterized by 2 temporally distinct but interrelated phases: ischemia (primary energy failure) and reperfusion (secondary energy failure). Loss of cerebral blood flow leads to decreased oxygen levels and energy crisis in the ischemic area, initiating a sequence of pathophysiological events that after reoxygenation lead to ischemia/reperfusion (I/R) brain damage. Mitochondrial impairment and oxidative stress are known to be early events in I/R injury.

View Article and Find Full Text PDF

Brain Perivascular Macrophages Initiate the Neurovascular Dysfunction of Alzheimer Aβ Peptides.

Circ Res

July 2017

From the Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY (L.P., K.U., L.G.B., K.K., M.M., P.Z., J.A., C.I.); McLaughlin Research Institute, Great Falls, MT (R.P., G.C.); and Mayo Clinic Jacksonville, FL (L.Y., S.Y.).

Rationale: Increasing evidence indicates that alterations of the cerebral microcirculation may play a role in Alzheimer disease, the leading cause of late-life dementia. The amyloid-β peptide (Aβ), a key pathogenic factor in Alzheimer disease, induces profound alterations in neurovascular regulation through the innate immunity receptor CD36 (cluster of differentiation 36), which, in turn, activates a Nox2-containing NADPH oxidase, leading to cerebrovascular oxidative stress. Brain perivascular macrophages (PVM) located in the perivascular space, a major site of brain Aβ collection and clearance, are juxtaposed to the wall of intracerebral resistance vessels and are a powerful source of reactive oxygen species.

View Article and Find Full Text PDF

Atrial Fibrillation and Mechanisms of Stroke: Time for a New Model.

Stroke

March 2016

From the Feil Family Brain and Mind Research Institute (H.K., C.I.) and Division of Cardiology (P.M.O.), Weill Cornell Medicine, New York, NY; and Department of Neurology, College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY (M.S.V.E.).

View Article and Find Full Text PDF

Age-dependent neurovascular dysfunction and damage in a mouse model of cerebral amyloid angiopathy.

Stroke

June 2014

From the Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY (L.P., K.K., S.E.J., P.Z., C.I.); Department of Neurosurgery, Stony Brook University, NY (M.L.P., W.E.V.N.); and McLaughlin Research Institute, Great Falls, MT (G.C.).

Background And Purpose: Accumulation of amyloid-β in cerebral blood vessels occurs in familial and sporadic forms of cerebral amyloid angiopathy and is a prominent feature of Alzheimer disease. However, the functional correlates of the vascular pathology induced by cerebral amyloid angiopathy and the mechanisms involved have not been fully established.

Methods: We used male transgenic mice expressing the Swedish, Iowa, and Dutch mutations of the amyloid precursor protein (Tg-SwDI) to examine the effect of cerebral amyloid angiopathy on cerebrovascular structure and function.

View Article and Find Full Text PDF

Hypertension and dementia.

Hypertension

July 2014

From the Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY.

View Article and Find Full Text PDF

Dichotomous effects of chronic intermittent hypoxia on focal cerebral ischemic injury.

Stroke

May 2014

From the Feil Family Brain and Mind Research Institute (K.A.J., P.Z., G.F., P.M.P., C.C., V.P., G.M., C.I.) and Department of Radiology (H.U.V.), Weill Cornell Medical College, New York; and Department of Natural Sciences, Baruch College, City University of New York (P.M.P.).

Background And Purpose: Obstructive sleep apnea, a condition associated with chronic intermittent hypoxia (CIH), carries an increased risk of stroke. However, CIH has been reported to either increase or decrease brain injury in models of focal cerebral ischemia. The factors determining the differential effects of CIH on ischemic injury and their mechanisms remain unclear.

View Article and Find Full Text PDF