1,048 results match your criteria: "From the ‡Center for Proteomics and Metabolomics.[Affiliation]"

Enzymes play a pivotal role in orchestrating complex cellular responses to external stimuli and environmental changes through signal transduction pathways. Despite their crucial roles, measuring enzyme activities is typically indirect and performed on a smaller scale, unlike protein abundance measured by high-throughput proteomics. Moreover, it is challenging to derive the activity of enzymes from proteome-wide post-translational modification (PTM) profiling data.

View Article and Find Full Text PDF

Insight into distribution and composition of nonhuman N-Glycans in mammalian organs via MALDI-TOF and MALDI-MSI.

Carbohydr Polym

March 2025

Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

The major hurdle of xenotransplantation is the immune response triggered by human natural antibodies interacting with carbohydrate antigens on the transplanted animal organ. Specifically, terminal glycoprotein motifs such as galactose-α1,3-galactose (α-Gal) and N-glycolylneuraminic acid (Neu5Gc) are significant obstacles. Little is known about the abundance and compositions of asparagine-linked complex carbohydrates (N-glycans) carrying these motifs in mammalian organs.

View Article and Find Full Text PDF

Acquisition of Fc-afucosylation of PfEMP1-specific IgG is age-dependent and associated with clinical protection against malaria.

Nat Commun

January 2025

Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Protective immunity to malaria depends on acquisition of parasite-specific antibodies, with Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) being one of the most important target antigens. The effector functions of PfEMP1-specific IgG include inhibition of infected erythrocyte (IE) sequestration and opsonization of IEs for cell-mediated destruction. IgG glycosylation modulates antibody functionality, with increased affinity to FcγRIIIa for IgG lacking fucose in the Fc region (Fc-afucosylation).

View Article and Find Full Text PDF

Phenomics-Based Discovery of Novel Orthosteric Choline Kinase Inhibitors.

Angew Chem Int Ed Engl

December 2024

Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.

Article Synopsis
  • CHKA is a key player in cell metabolism and is linked to cancer and immune function, but developing effective inhibitors has been challenging.
  • Researchers discovered that CHKA is an off-target for specific inhibitors, which helps clarify previous inconsistencies in related studies.
  • Modulating CHKA affects immune responses, particularly B-cell maturation and IgG secretion, indicating its significant role in immune signaling.
View Article and Find Full Text PDF

Parasitic infections during pregnancy in Gabon affect glycosylation patterns of maternal and child antibodies.

Sci Rep

December 2024

Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), Albinusdreef 2, 2333ZA, Leiden, Zuid-Holland, The Netherlands.

Antibody glycosylation patterns can affect antibody functionality and thereby contribute to protection against invading pathogens. During pregnancy, maternal antibodies can be transferred through the placenta and contribute to modulating both the mother's and her child's immune responses. Although several studies of IgG glycosylation during pregnancy have been carried out, very few cohorts studied were from sub-Saharan Africa, where exposure to microorganisms and parasites is high.

View Article and Find Full Text PDF

Shotgun proteomics can be applied to identify and study insect species in diverse research areas such as agriculture, forensics, biodiversity conservation, and food safety. In this chapter, we have provided a detailed protocol for shotgun proteomics analytical methods involving enzymatic digestion of insect proteins using trypsin, separation using high-performance liquid chromatography, and detection of separated peptides using high-resolution mass spectrometry. The protocol also covers the utilization of bioinformatics software for protein identification and spectral library building, proposing both proteomic database-dependent and independent methods.

View Article and Find Full Text PDF

The identification of peptides is a cornerstone of mass spectrometry-based proteomics. Spectral library-based algorithms are well-established methods to enhance the identification efficiency of peptides during database searches in proteomics. However, these algorithms are not specifically tailored for tandem mass tag (TMT)-based proteomics due to the lack of high-quality TMT spectral libraries.

View Article and Find Full Text PDF

Development of a High-Throughput Platform for Quantitation of Histone Modifications on a New QTOF Instrument.

Mol Cell Proteomics

December 2024

Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, United States. Electronic address:

Histone post-translational modifications (PTMs) regulate gene expression patterns through epigenetic mechanisms. The five histone proteins (H1, H2A, H2B, H3, and H4) are extensively modified, with over 75 distinct modification types spanning more than 200 sites. Despite strong advances in mass spectrometry (MS)-based approaches, identification and quantification of modified histone peptides remains challenging because of factors, such as isobaric peptides, pseudo-isobaric PTMs, and low stoichiometry of certain marks.

View Article and Find Full Text PDF

Advances in high-throughput omics technologies have enabled system-wide characterization of biological samples across multiple molecular levels, such as the genome, transcriptome, and proteome. However, as sample sizes rapidly increase in large-scale multi-omics studies, sample mix-ups have become a prevalent issue, compromising data integrity and leading to erroneous conclusions. The interconnected nature of multi-omics data presents an opportunity to identify and correct these errors.

View Article and Find Full Text PDF

Tumor-Expressed SPPL3 Supports Innate Antitumor Immune Responses.

Eur J Immunol

December 2024

Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands.

Article Synopsis
  • The immune response against tumors relies on various immune cells that recognize cancer cells through different receptors, but tumors can evade detection by manipulating these interactions.
  • The study highlights the role of neolacto-series glycosphingolipids (nsGSLs), linked to the enzyme B3GNT5, in enabling tumors to escape immune recognition, particularly focusing on how the loss of signal peptide peptidase like 3 (SPPL3) leads to increased nsGSL levels that impair CD8 T cell activation.
  • Findings reveal that tumor cells deficient in SPPL3 are less targeted by neutrophils and NK cells, and the interaction dynamics—particularly through nsGSL expression—can influence immune cell activation and effectiveness, suggesting potential
View Article and Find Full Text PDF

Challenges in the identification and quantification of an unknown impurity in chenodeoxycholic acid drug substance.

Eur J Pharm Sci

February 2025

Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC, Meibergdreef 9 1105 AZ, Amsterdam, The Netherlands; Platform Medicine for Society, Amsterdam UMC, Meibergdreef 9 1105 AZ, Amsterdam, The Netherlands.

In 2018 the Amsterdam University Medical Centre decided to prepare chenodeoxycholic acid (CDCA) capsules (also known as pharmacy compounding) for patients with the genetic metabolic disease cerebrotendinous xanthomatosis (CTX) when the product with a marketing authorization was commercially unavailable for patients. However, after reanalysis, unknown impurities were identified in the CDCA active pharmaceutical ingredient (API) using thin-layer chromatography from the European Pharmacopoeia (Ph.Eur.

View Article and Find Full Text PDF

The asialoglycoprotein receptor 1 (ASGR1), a multivalent carbohydrate-binding receptor that primarily is responsible for recognizing and eliminating circulating glycoproteins with exposed galactose (Gal) or N-acetylgalactosamine (GalNAc) as terminal glycan residues, has been implicated in modulating the lipid metabolism and reducing cardiovascular disease burden. In this study, we investigated the impact of ASGR1 deficiency (ASGR1 on atherosclerosis by evaluating its effects on plaque formation, lipid metabolism, circulating immunoinflammatory response, and circulating N-glycome under the hypercholesterolemic condition in ApoE-deficient mice. After 16 weeks of a western-type diet, ApoE/ASGR1 mice presented lower plasma cholesterol and triglyceride levels compared to ApoE.

View Article and Find Full Text PDF

Fc-Afucosylation of VAR2CSA-Specific Immunoglobulin G and Clinical Immunity to Placental Plasmodium falciparum Malaria.

J Infect Dis

November 2024

Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.

Background: Acquired immunity to Plasmodium falciparum malaria is mainly mediated by immunoglobulin G (IgG) targeting erythrocyte membrane protein 1 (PfEMP1). These adhesins mediate infected erythrocyte (IE) sequestration, protecting IEs from splenic destruction. PfEMP1-specific IgG is therefore thought to protect mainly by inhibiting IE sequestration.

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas arising from peripheral nerves, accounting for 3% to 5% of soft tissue sarcomas. MPNSTs often recur locally, leading to poor survival. Achieving tumor-free surgical margins is essential to prevent recurrence, but current methods for determining tumor margins are limited, highlighting the need for improved biomarkers.

View Article and Find Full Text PDF

Antibodies have a key role in the immune system, making their characterization essential to biomedical, biopharmaceutical, and clinical research questions. Antibody effector functions are mainly controlled by quantity, subclass, and Fc glycosylation. We describe an integrated method to measure these three critical dimensions simultaneously.

View Article and Find Full Text PDF

Glycosylation signature of plasma IgA of critically ill COVID-19 patients.

Front Immunol

November 2024

Center for Infection and Genomics of the Lung, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany.

Article Synopsis
  • Thromboembolic complications in severe COVID-19 are linked to neutrophil-extracellular-trap (NET)-driven immunothrombosis, indicating a significant immune response issue.
  • This study analyzes plasma IgA glycosylation during severe SARS-CoV-2 and Influenza A infections, finding changes in glycan structures associated with acute respiratory distress syndrome (ARDS).
  • The differences in IgA glycosylation patterns between COVID-19 and Influenza A suggest that these changes could influence immune responses and NET formation, highlighting the need for further exploration of IgA's role in infectious diseases.
View Article and Find Full Text PDF

Hematopoiesis unfolds within the bone marrow niche where hematopoietic stem cells (HSCs) play a central role in continually replenishing blood cells. The hypoxic bone marrow environment imparts peculiar metabolic characteristics to hematopoietic processes. Here, we discuss the internal metabolism of HSCs and describe external influences exerted on HSC metabolism by the bone marrow niche environment.

View Article and Find Full Text PDF

Brief exposure of monocytes to atherogenic molecules, such as oxidized lipoproteins, triggers a persistent pro-inflammatory phenotype, named trained immunity. In mice, transient high-fat diet leads to trained immunity, which aggravates atherogenesis. We hypothesized that a single high-fat challenge in humans induces trained immunity.

View Article and Find Full Text PDF
Article Synopsis
  • - The study analyzes age-dependent changes in the brain proteins and their modifications in several mouse models of Alzheimer's disease (AD), focusing on how these models represent human AD complexities.
  • - Results showed that commonly used mouse models only replicate about 30% of the protein changes seen in humans, but adding more genetic factors can increase this to 42%.
  • - The research highlights inconsistencies between protein and gene expression in the 5xFAD model, indicating that amyloid plaque environments affect protein turnover, which could lead to new targets for AD treatment.
View Article and Find Full Text PDF

Apolipoprotein E aggregation in microglia initiates Alzheimer's disease pathology by seeding β-amyloidosis.

Immunity

November 2024

Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany. Electronic address:

The seeded growth of pathogenic protein aggregates underlies the pathogenesis of Alzheimer's disease (AD), but how this pathological cascade is initiated is not fully understood. Sporadic AD is linked genetically to apolipoprotein E (APOE) and other genes expressed in microglia related to immune, lipid, and endocytic functions. We generated a transgenic knockin mouse expressing HaloTag-tagged APOE and optimized experimental protocols for the biochemical purification of APOE, which enabled us to identify fibrillary aggregates of APOE in mice with amyloid-β (Aβ) amyloidosis and in human AD brain autopsies.

View Article and Find Full Text PDF

First-in-Class Small Molecule Degrader of Pregnane X Receptor Enhances Chemotherapy Efficacy.

J Med Chem

October 2024

Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, Tennessee 38105-3678, United States.

Article Synopsis
  • Pregnane X receptor (PXR) is a protein that, when activated by various compounds, can lead to reduced effectiveness and safety of drugs by decreasing their active levels and increasing harmful byproducts.
  • To address this, drug developers need to evaluate how new drugs interact with PXR and modify them to limit any negative effects without losing their effectiveness.
  • The study describes a new approach using specialized molecules to target and degrade PXR, leading to improved anticancer effects of the chemotherapy drug paclitaxel, which is affected by PXR.
View Article and Find Full Text PDF

Loss of proteostasis is a hallmark of aging that underlies many age-related diseases. Different cell compartments experience distinctive challenges in maintaining protein quality control, but how aging regulates subcellular proteostasis remains underexplored. Here, by targeting the misfolding-prone Fluc luciferase to the cytoplasm, mitochondria, and nucleus, we established transgenic sensors to examine subcellular proteostasis in Drosophila.

View Article and Find Full Text PDF

is the leading cause of antibiotic-associated infections worldwide. Within the host, can transition from a sessile to a motile state by secreting PPEP-1, which releases the cells from the intestinal epithelium by cleaving adhesion proteins. PPEP-1 belongs to the group of Pro-Pro endopeptidases (PPEPs), which are characterized by their unique ability to cleave proline-proline bonds.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists from 34 labs in 19 countries worked together to measure certain fats (ceramides) in human blood using special techniques.
  • They used both standard methods and their own methods to get very accurate and consistent results.
  • The study helps improve future medical tests and treatments by providing reliable information about these fats in blood samples.
View Article and Find Full Text PDF

Disruption of the circadian clock in skeletal muscle worsens local and systemic health, leading to decreased muscle strength, metabolic dysfunction, and aging-like phenotypes. Whole-body knockout mice that lack Bmal1, a key component of the molecular clock, display premature aging. Here, by using adeno-associated viruses, we rescued Bmal1 expression specifically in the skeletal muscle fibers of Bmal1-KO mice and found that this engaged the circadian clock and clock output gene expression, contributing to extended lifespan.

View Article and Find Full Text PDF