9,652 results match your criteria: "From the ‡Broad Institute of MIT and Harvard[Affiliation]"

Droplet-based high-throughput 3D genome structure mapping of single cells with simultaneous transcriptomics.

Cell Discov

January 2025

Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.

Single-cell three-dimensional (3D) genome techniques have advanced our understanding of cell-type-specific chromatin structures in complex tissues, yet current methodologies are limited in cell throughput. Here we introduce a high-throughput single-cell Hi-C (dscHi-C) approach and its transcriptome co-assay (dscHi-C-multiome) using droplet microfluidics. Using dscHi-C, we investigate chromatin structural changes during mouse brain aging by profiling 32,777 single cells across three developmental stages (3 months, 12 months, and 23 months), yielding a median of 78,220 unique contacts.

View Article and Find Full Text PDF

In Alzheimer's disease (AD) research, the 5xFAD mouse model is commonly used as a heterozygote crossed with other genetic models to study AD pathology. We investigated whether the parental origin of the 5xFAD transgene affects plaque deposition. Using quantitative light-sheet microscopy, we found that paternal inheritance of the transgene led to a 2-fold higher plaque burden compared with maternal inheritance, a finding consistent across multiple 5xFAD colonies.

View Article and Find Full Text PDF

Importance: Disease characteristics of genetically mediated coronary artery disease (CAD) on coronary angiography and the association of genomic risk with outcomes after coronary angiography are not well understood.

Objective: To assess the angiographic characteristics and risk of post-coronary angiography outcomes of patients with genomic drivers of CAD: familial hypercholesterolemia (FH), high polygenic risk score (PRS), and clonal hematopoiesis of indeterminate potential (CHIP).

Design, Setting, And Participants: A retrospective cohort study of 3518 Mass General Brigham Biobank participants with genomic information who underwent coronary angiography was conducted between July 18, 2000, and August 1, 2023.

View Article and Find Full Text PDF

Viral variant and host vaccination status impact infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), yet how these factors shift cellular responses in the human nasal mucosa remains uncharacterized. We performed single-cell RNA sequencing (scRNA-seq) on nasopharyngeal swabs from vaccinated and unvaccinated adults with acute Delta and Omicron SARS-CoV-2 infections and integrated with data from acute infections with ancestral SARS-CoV-2. Patients with Delta and Omicron exhibited greater similarity in nasal cell composition driven by myeloid, T cell and SARS-CoV-2 cell subsets, which was distinct from that of ancestral cases.

View Article and Find Full Text PDF

The past decade has seen remarkable progress in identifying genes that, when impacted by deleterious coding variation, confer high risk for autism spectrum disorder (ASD), intellectual disability, and other developmental disorders. However, most underlying gene discovery efforts have focused on individuals of European ancestry, limiting insights into genetic risks across diverse populations. To help address this, the Genomics of Autism in Latin American Ancestries Consortium (GALA) was formed, presenting here the largest sequencing study of ASD in Latin American individuals (n>15,000).

View Article and Find Full Text PDF

Gene networks encapsulate biological knowledge, often linked to polygenic diseases. While model system experiments generate many plausible gene networks, validating their role in human phenotypes requires evidence from human genetics. Rare variants provide the most straightforward path for such validation.

View Article and Find Full Text PDF

Genetic and genomic variation among microbial strains can dramatically influence their phenotypes and environmental impact, including on human health. However, inferential methods for quantifying these differences have been lacking. Strain-level metagenomic profiling data has several features that make traditional statistical methods challenging to use, including high dimensionality, extreme variation among samples, and complex phylogenetic relatedness.

View Article and Find Full Text PDF

Tumors can exert a far-reaching influence on the body, triggering systemic responses that contribute to debilitating conditions like cancer cachexia. To characterize the mechanisms underlying tumor-host interactions, we utilized a BioID-based proximity labeling method to identify proteins secreted by Yki adult gut tumors into the bloodstream/hemolymph. Among the major proteins identified are coagulation and immune-responsive factors that contribute to the systemic wasting phenotypes associated with Yki tumors.

View Article and Find Full Text PDF

Nutrition science has been represented as biomedical, environmental, societal and economic field, but quantum biology is sidestepped, thereby obscuring cognate problems and solutions. We are generally nourished for health, optimal well-being, longevity and personal security through sustainable livelihoods. Our nourish-ments include not only food and energy but also light from the sun, the firmament and the earth itself, along with information transmitted in subatomic particles and electromagnetic wave forms.

View Article and Find Full Text PDF

Background: Neuroblastoma is a heterogeneous disease with adrenergic (ADRN)- and therapy resistant mesenchymal (MES)-like cells driven by distinct transcription factor networks. Here, we investigate the expression of immunotherapeutic targets in each neuroblastoma subtype and propose pan-neuroblastoma and cell state specific targetable cell-surface proteins.

Methods: We characterized cell lines, patient-derived xenografts, and patient samples as ADRN-dominant or MES-dominant to define subtype-specific and pan-neuroblastoma gene sets.

View Article and Find Full Text PDF

Intestinal microbiome metabolites control sepsis outcome.

Nat Immunol

January 2025

Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

View Article and Find Full Text PDF

Stress and Cognition: From Bench to Bedside?

Biol Psychiatry

February 2025

Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts.

View Article and Find Full Text PDF

Adjuvant aspirin therapy and colorectal cancer survival.

Lancet Gastroenterol Hepatol

January 2025

Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA. Electronic address:

View Article and Find Full Text PDF

Long somatic DNA-repeat expansion drives neurodegeneration in Huntington's disease.

Cell

January 2025

Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02215, USA. Electronic address:

In Huntington's disease (HD), striatal projection neurons (SPNs) degenerate during midlife; the core biological question involves how the disease-causing DNA repeat (CAG) in the huntingtin (HTT) gene leads to neurodegeneration after decades of biological latency. We developed a single-cell method for measuring this repeat's length alongside genome-wide RNA expression. We found that the HTT CAG repeat expands somatically from 40-45 to 100-500+ CAGs in SPNs.

View Article and Find Full Text PDF

Unusual Phospholipids from Linked to Depression.

J Am Chem Soc

January 2025

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States.

A multifactorial association study detected a probable causal connection between the prevalence of in the gut microbiome and the incidence of major depressive disorder (MDD) in the human host. A bioassay-guided fractionation approach identified bacterially produced metabolites that induced pro-inflammatory immune responses. The metabolites are unusual phospholipids that resemble conventional cardiolipins, in which diethanolamine (DEA) replaces the central glycerol.

View Article and Find Full Text PDF

Protocol for mitochondrial variant enrichment from single-cell RNA sequencing using MAESTER.

STAR Protoc

January 2025

Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA. Electronic address:

Single-cell RNA sequencing (scRNA-seq) enables detailed characterization of cell states but often lacks insights into tissue clonal structures. Here, we present a protocol to probe cell states and clonal information simultaneously by enriching mitochondrial DNA (mtDNA) variants from 3'-barcoded full-length cDNA. We describe steps for input library preparation, mtDNA enrichment, PCR product cleanup, and paired-end sequencing.

View Article and Find Full Text PDF

An implantable system for opioid safety.

Device

October 2024

Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.

Naloxone can effectively rescue victims from opioid overdose, but less than 5% survive due to delayed or absent first responder intervention. Current overdose reversal systems face key limitations, including low user adherence, false positive detection, and slow antidote delivery. Here, we describe a subcutaneously implanted robotic first responder to overcome these challenges.

View Article and Find Full Text PDF

Many human diseases are the result of early developmental defects. As most paediatric diseases and disorders are rare, children are critically underrepresented in research. Functional genomics studies primarily rely on adult tissues and lack critical cell states in specific developmental windows.

View Article and Find Full Text PDF

DNA is subject to continual damage, leaving each cell with thousands of individual DNA lesions at any given moment. The efficiency of DNA repair means that most known classes of lesion have a half-life of minutes to hours, but the extent to which DNA damage can persist for longer durations remains unknown. Here, using high-resolution phylogenetic trees from 89 donors, we identified mutations arising from 818 DNA lesions that persisted across multiple cell cycles in normal human stem cells from blood, liver and bronchial epithelium.

View Article and Find Full Text PDF

Background And Objectives: Previous studies have shown inconsistent associations between red meat intake and cognitive health. Our objective was to examine the association between red meat intake and multiple cognitive outcomes.

Methods: In this prospective cohort study, we included participants free of dementia at baseline from 2 nationwide cohort studies in the United States: the Nurses' Health Study (NHS) and the Health Professionals Follow-Up Study (HPFS).

View Article and Find Full Text PDF

Importance: Treatment to lower high levels of low-density lipoprotein cholesterol (LDL-C) reduces incident coronary artery disease (CAD) risk but modestly increases the risk for incident type 2 diabetes (T2D). The extent to which genetic factors across the cholesterol spectrum are associated with incident T2D is not well understood.

Objective: To investigate the association of genetic predisposition to increased LDL-C levels with incident T2D risk.

View Article and Find Full Text PDF

Prion disease is a fatal neurodegenerative disease caused by the misfolding of prion protein (PrP) encoded by the PRNP gene. While there is currently no cure for the disease, depleting PrP in the brain is an established strategy to prevent or stall templated misfolding of PrP. Here we developed in vivo cytosine and adenine base strategies delivered by adeno-associated viruses to permanently modify the PRNP locus to achieve PrP knockdown in the mouse brain.

View Article and Find Full Text PDF

Synthesis of Sulfonated Peptides Using a Trifluoromethyltoluene-Protected Amino Acid.

J Org Chem

January 2025

Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States.

A scalable, seven step synthesis is reported for a trifluoromethyl toluene protected sulfonated phenylalanine building block whose utility was demonstrated in the synthesis of four CXCR4-derived sulfonopeptides. When compared to a conventional trichloroethyl protected building block, overall yield was improved by up to 4-fold. We believe this building block will prove to be of significant value for the synthesis of a variety of peptide targets containing phenylalanine sulfonate, a bioisostere of tyrosine sulfate, enabling orthogonal protection strategies and improving synthetic efficiency and yield.

View Article and Find Full Text PDF

Genomic and phenotypic correlates of mosaic loss of chromosome Y in blood.

Am J Hum Genet

January 2025

Division of Biostatistics, Data Science Institute, Medical College of Wisconsin, Milwaukee, WI, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA. Electronic address:

Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole-genome sequencing (WGS) of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program.

View Article and Find Full Text PDF

is a bacterium associated with colorectal cancer (CRC) tumorigenesis, progression, and metastasis. Fap2 is a fusobacteria-specific outer membrane galactose-binding lectin that mediates adherence to and invasion of CRC tumors. Advances in omics analyses provide an opportunity to profile and identify microbial genomic features that correlate with the cancer-associated bacterial virulence factor Fap2.

View Article and Find Full Text PDF