85 results match your criteria: "Fraunhofer Institute for Solar Energy Systems (ISE)[Affiliation]"

Today, there are environmental problems all over the world due to the emission of greenhouse gasses caused by the combustion of diesel fuel. The excessive consumption and drastic reduction of fossil fuels have prompted the leaders of various countries, including Iran, to put the use of alternative and clean energy sources on the agenda. In recent years, the use of biofuels and the addition of nanoparticles to diesel fuel have reduced pollutant emissions, improved the environment, and enhanced the physicochemical properties of the fuel.

View Article and Find Full Text PDF

Compositional engineering of organic-inorganic metal halide perovskite allows for improved optoelectrical properties, however, phase segregation occurs during crystal nucleation and limits perovskite solar cell device performance. Herein, we show that by applying tetrabutylammonium bistriflimide as an additive in the perovskite precursor solution, ultra-uniform perovskite crystals are obtained, which effectively increases device performance. As a result, power conversion efficiencies (PCEs) of 24.

View Article and Find Full Text PDF

Pistachio trees have become a significant global agricultural commodity because their nuts are renowned for their unique flavour and numerous health benefits, contributing to their high demand worldwide. This study explores the application of Hyperspectral Imaging (HSI) and Machine Learning (ML) to determine pistachio nuts' geographic origin and irrigation practices, alongside predicting essential commercial quality and yield parameters. The study was conducted in two Spanish orchards and employed HSI technology to capture spectral data.

View Article and Find Full Text PDF

Luminescent coupling (LC) is a key phenomenon in monolithic tandem solar cells. This study presents a nondestructive technique to quantitatively evaluate the LC effect, addressing a gap in the existing predictions made by optical modeling. The method involves measuring the ratio of photons emitted from the high bandgap top cell that escape through the rear, contributing additional current to the bottom cell, and to those escaping from the front side of top cell.

View Article and Find Full Text PDF

Reaction Mechanisms of High-Rate Copper Electrochemical Machining in Nitrate Electrolytes.

Angew Chem Int Ed Engl

November 2024

Institute for Inorganic Chemistry and Analytic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany.

The high-rate electrochemical dissolution of copper in nitrate electrolytes is investigated primarily via polarization curves, while varying parameters such as the electrolyte flow velocity, the electrolyte resistance, the anode geometry, and the temperature. This study focuses on the re-rise in current at high voltages after the limiting current plateau. As a result of the studies, a change in the complexation mechanism from hydration to "solvo-nitration" is proposed, which requires an additional potential drop within the electrochemical double layer.

View Article and Find Full Text PDF

Vapor-based deposition techniques are emerging approaches for the design of carbon-supported metal powder electrocatalysts with tailored catalyst entities, sizes, and dispersions. Herein, a pulsed CVD (Pt-pCVD) approach is employed to deposit different Pt entities on mesoporous N-doped carbon (MPNC) nanospheres to design high-performance hydrogen evolution reaction (HER) electrocatalysts. The influence of consecutive precursor pulse number (50-250) and deposition temperature (225-300 °C) are investigated.

View Article and Find Full Text PDF

While perovskite photovoltaic (PV) devices are on the verge of commercialization, promising methods to recycle or remanufacture fully encapsulated perovskite solar cells (PSCs) and modules are still missing. Through a detailed life-cycle assessment shown in this work, we identify that the majority of the greenhouse gas emissions can be reduced by re-using the glass substrate and parts of the PV cells. Based on these analytical findings, we develop a novel thermally assisted mechanochemical approach to remove the encapsulants, the electrode, and the perovskite absorber, allowing reuse of most of the device constituents for remanufacturing PSCs, which recovered nearly 90% of their initial performance.

View Article and Find Full Text PDF

The stabilization of grain boundaries and surfaces of the perovskite layer is critical to extend the durability of perovskite solar cells. Here we introduced a sulfonium-based molecule, dimethylphenethylsulfonium iodide (DMPESI), for the post-deposition treatment of formamidinium lead iodide perovskite films. The treated films show improved stability upon light soaking and remains in the black phase after two years ageing under ambient condition without encapsulation.

View Article and Find Full Text PDF

Chemical environment and precursor-coordinating molecular interactions within a perovskite precursor solution can lead to important implications in structural defects and crystallization kinetics of a perovskite film. Thus, the opto-electronic quality of such films can be boosted by carefully fine-tuning the coordination chemistry of perovskite precursors controllable introduction of additives, capable of forming intermediate complexes. In this work, we employed a new type of ligand, namely 1-phenylguanidine (PGua), which coordinates strongly with the PbI complexes in the perovskite precursor, forming new intermediate species.

View Article and Find Full Text PDF

Synthesis and Characterization of Carbon-Based Heterogeneous Catalysts for Energy Release of Molecular Solar Thermal Energy Storage Materials.

ACS Appl Mater Interfaces

February 2024

Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), C/Madre de Dios 53, Logroño 26004, La Rioja.

Molecular solar thermal energy storage (MOST) systems are rapidly becoming a feasible alternative to energy storage and net-zero carbon emission heating. MOST systems involve a single photoisomerization pair that incorporates light absorption, storage, and heat release processes in one recurring cycle. Despite significant recent advancements in the field, the catalytic back-reaction from MOST systems remains relatively unexplored.

View Article and Find Full Text PDF

In the last decade, organic-inorganic hybrid halide perovskite materials have developed into a very large research area in photovoltaics and optoelectronics as promising light harvesters. Lead-free double perovskites have recently been investigated as an environmentally friendly alternative to the lead-containing compositions. However, lead-free organic-inorganic hybrid halide double perovskites have so far rarely been produced due to a certain complexity in their synthesis.

View Article and Find Full Text PDF

Adsorption modules are the core components of thermally driven adsorption heat pumps and chillers. Due to the transient nature of the adsorption and desorption processes, usually complicated numerical models are used for prediction of efficiency and heat flow rates. In this research article, we suggest a radically simplified calculation based on splitting up the ad- and desorption half cycle into a transient, strongly non-isothermal switching phase and a quasi-isothermal phase.

View Article and Find Full Text PDF

Organic Photovoltaics (OPV) is a very promising technology to harvest artificial illumination and power smart devices of the Internet of Things (IoT). Efficiencies as high as 30.2% have been reported for OPVs under warm white light-emitting diode (LED) light.

View Article and Find Full Text PDF

Low-cost approaches for mass production of III-V-based photovoltaics are highly desired today. For the first time, this work presents industrially relevant mask and plate for front metallization of III-V-based solar cells replacing expensive photolithography. Metal contacts are fabricated by nickel (Ni) electroplating directly onto the solar cell's front using a precisely structured mask.

View Article and Find Full Text PDF

A facile spray-pressing synthesis approach for reusable photothermal masks.

iScience

August 2023

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute, Wuhan University of Technology, Wuhan 430070, China.

Certain types of face masks are highly efficient in protecting humans from bacterial and viral pathogens, and growing concerns with high safety, low cost, and wide market suitability have accelerated the replacement of reusable face masks with disposable ones during the last decades. However, wearing these masks creates countless problems associated with personnel comfort as well as more significant issues related to the cost of fabrication, the generation of medical waste, and environmental contaminants. In this work, we present a facile spray-pressing technique for the production of P-masks with a potential scale-up prospect by adding a graphene layer on one side of meltblown fabric and a functional layer on the other side.

View Article and Find Full Text PDF

Incorporation of carrier-selective passivating contacts is on the critical path for approaching the theoretical power conversion efficiency limit in silicon solar cells. We have used plasma-enhanced atomic layer deposition (ALD) to create ultra-thin films at the single nanometre-scale which can be subsequently chemically enhanced to have properties suitable for high-performance contacts. Negatively charged 1 nm thick HfO films exhibit very promising passivation properties - exceeding those of SiO and AlO at an equivalent thickness - providing a surface recombination velocity (SRV) of 19 cm s on -type silicon.

View Article and Find Full Text PDF

The impact of floating photovoltaic power plants on lake water temperature and stratification.

Sci Rep

May 2023

Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Baden-Württemberg, Germany.

Floating photovoltaics (FPV) refers to photovoltaic power plants anchored on water bodies with modules mounted on floats. FPV represents a relatively new technology in Europe and is currently showing a rapid growth in deployment. However, effects on thermal characteristics of lakes are largely unknown, yet these are crucial for licensing and approval of such plants.

View Article and Find Full Text PDF

Platinum is one of the best-performing catalysts for the hydrogen evolution reaction (HER). However, high cost and scarcity severely hinder the large-scale application of Pt electrocatalysts. Constructing highly dispersed ultrasmall Platinum entities is thereby a very effective strategy to increase Pt utilization and mass activities, and reduce costs.

View Article and Find Full Text PDF

Monolithic Zirconium-Based Metal-Organic Frameworks for Energy-Efficient Water Adsorption Applications.

Adv Mater

June 2023

The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.

Space cooling and heating, ventilation, and air conditioning (HVAC) accounts for roughly 10% of global electricity use and are responsible for ca. 1.13 gigatonnes of CO emissions annually.

View Article and Find Full Text PDF

The development of thermally driven water-sorption-based technologies relies on high-performing water vapor adsorbents. Here, polymorphism in Al-metal-organic frameworks is disclosed as a new strategy to tune the hydrophilicity of MOFs. This involves the formation of MOFs built from chains of either trans- or cis- µ-OH-connected corner-sharing AlO(OH) octahedra.

View Article and Find Full Text PDF

A Grain Orientation-Independent Single-Step Saw Damage Gettering/Wet texturing Process for Efficient Silicon Solar Cells.

Small

May 2023

Energy and Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841, Republic of Korea.

Improving electrical and optical properties is important in manufacturing high-efficiency solar cells. Previous studies focused on individual gettering and texturing methods to improve solar cell material quality and reduce reflection loss, respectively. This study presents a novel method called saw damage gettering with texturing that effectively combines both methods for multicrystalline silicon (mc-Si) wafers manufactured using the diamond wire sawing (DWS) method.

View Article and Find Full Text PDF

A sacrificial film of polystyrene nanoparticles was utilized to introduce nano-cavities into mesoporous metal oxide layers. This enabled the growth of larger perovskite crystals inside the oxide scaffold with significantly suppressed non-radiative recombination and improved device performance. This work exemplifies potential applications of such nanoarchitectonic approaches in perovskite opto-electronic devices.

View Article and Find Full Text PDF

This work focuses on developing an understanding of the rheological properties of polymer-based dopant-source inks at the timescales relevant to inkjet printing and their corresponding roles in determining the production of defect-free droplets. Ink-specific optimization of printing processes for phosphorus and boron dopant-source inks with different compositions is demonstrated. Rheological flow curves measured by a piezo axial vibrator (PAV) were used to study the changes in complex viscosity (*) and in the elastic (G') and viscous (G″) components of the shear modulus (G*) with respect to changes in frequency (from f = 1 kHz to f = 10 kHz) to obtain an insight into the high-frequency behaviour of inks, as well as the effects of temperature (25 °C and 45 °C) and the natural aging time of the inks.

View Article and Find Full Text PDF

Additive manufacturing offers a wide range of possibilities for the design and optimization of lightweight and application-tailored structures. The great design freedom of the Laser Powder Bed Fusion (LPBF) manufacturing process enables new design and production concepts for heat pipes and their internal wick structures, using various metallic materials. This allows an increase in heat pipe performance and a direct integration into complex load-bearing structures.

View Article and Find Full Text PDF

Sugar-to-What? An Environmental Merit Order Curve for Biobased Chemicals and Plastics.

ACS Sustain Chem Eng

December 2022

Institute for Technical Thermodynamics, RWTH Aachen University, Schinkelstr. 8, 52062Aachen, Germany.

The chemical industry aims to reduce its greenhouse gas emissions (GHGs) by adopting biomass as a renewable carbon feedstock. However, biomass is a limited resource. Thus, biomass should preferentially be used in processes that most reduce GHG emissions.

View Article and Find Full Text PDF