122 results match your criteria: "Fraunhofer Institute for Integrated Circuits IIS[Affiliation]"

A vast multitude of tasks in histopathology could potentially benefit from the support of artificial intelligence (AI). Many examples have been shown in the literature and first commercial products with FDA or CE-IVDR clearance are available. However, two key challenges remain: (1) a scarcity of thoroughly annotated images, respectively the laboriousness of this task, and (2) the creation of robust models that can cope with the data heterogeneity in the field (domain generalization).

View Article and Find Full Text PDF

We present the package prosper_nn, that provides four neural network architectures dedicated to time series forecasting, implemented in PyTorch. In addition, prosper_nn contains the first sensitivity analysis suitable for recurrent neural networks (RNN) and a heatmap to visualize forecasting uncertainty, which was previously only available in Java. These models and methods have successfully been in use in industry for two decades and were used and referenced in several scientific publications.

View Article and Find Full Text PDF

Fabricating thin metal layers and particularly observing their formation process in situ is of fundamental interest to tailor the quality of such a layer on polymers for organic electronics. In particular, the process of high power impulse magnetron sputtering (HiPIMS) for establishing thin metal layers has sparsely been explored in situ. Hence, in this study, we investigate the growth of thin gold (Au) layers with HiPIMS and compare their growth with thin Au layers prepared by conventional direct current magnetron sputtering (dcMS).

View Article and Find Full Text PDF

The development of effective recycling technologies is essential for the recovery and reuse of the raw materials required for lithium-ion batteries (LIBs). Future recycling processes depend on accessible information, necessitating the implementation of a digital battery passport. The European battery regulation mandates the use of a machine-readable identifier physically attached to the batteries for accessing digital information.

View Article and Find Full Text PDF

The Artificial Neural Twin - Process optimization and continual learning in distributed process chains.

Neural Netw

December 2024

Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits IIS, Division Development Center X-ray Technology, Flugplatzstr. 75, 90768 Fürth, Germany; Pattern Recognition Lab, Friedich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany. Electronic address:

Industrial process optimization and control is crucial to increase economic and ecologic efficiency. However, data sovereignty, differing goals, or the required expert knowledge for implementation impede holistic implementation. Further, the increasing use of data-driven AI-methods in process models and industrial sensory often requires regular fine-tuning to accommodate distribution drifts.

View Article and Find Full Text PDF

Purpose: There is a need for high resolution non-invasive imaging methods of physiologic magnetic fields. The purpose of this work is to develop a MRI detection approach for non-sinusoidal magnetic fields based on the rotary excitation (REX) mechanism which was previously successfully applied for the detection of oscillating magnetic fields in the sub-nT range.

Methods: The new detection concept was examined by means of Bloch simulations, evaluating the interaction effect of spin-locked magnetization and low-frequency pulsed magnetic fields.

View Article and Find Full Text PDF

The Me 163 was a Second World War fighter airplane and is currently displayed in the Deutsches Museum in Munich, Germany. A complete computed tomography (CT) scan was obtained using a large scale industrial CT scanner to gain insights into its history, design, and state of preservation. The CT data enables visual examination of the airplane's structural details across multiple scales, from the entire fuselage to individual sprockets and rivets.

View Article and Find Full Text PDF

The growing amount of electronic waste is a global challenge: on one hand, it poses a threat to the environment as it may contain toxic or hazardous substances, on the other hand it is a valuable 'urban mine' containing metals like gold and copper. Thus, recycling of electronic waste is not only a measure to reduce environmental pollution but also economically reasonable as prices for raw materials are rising. Within electronic waste, printed circuit boards (PCBs) occupy a prominent position, as they contain most of the valuable material.

View Article and Find Full Text PDF

Background And Purpose: Hereditary spastic paraplegias (HSPs) comprise a group of inherited neurodegenerative disorders characterized by progressive spasticity and weakness. Botulinum toxin has been approved for lower limb spasticity following stroke and cerebral palsy, but its effects in HSPs remain underexplored. We aimed to characterize the effects of botulinum toxin on clinical, gait, and patient-reported outcomes in HSP patients and explore the potential of mobile digital gait analysis to monitor treatment effects and predict treatment response.

View Article and Find Full Text PDF

Background: Huntington's disease (HD) is a progressive neurodegenerative disease caused by a CAG trinucleotide expansion in the huntingtin gene. The length of the CAG repeat is inversely correlated with disease onset. HD is characterized by hyperkinetic movement disorder, psychiatric symptoms, and cognitive deficits, which greatly impact patient's quality of life.

View Article and Find Full Text PDF

Investigating acute stress responses is crucial to understanding the underlying mechanisms of stress. Current stress assessment methods include self-reports that can be biased and biomarkers that are often based on complex laboratory procedures. A promising additional modality for stress assessment might be the observation of body movements, which are affected by negative emotions and threatening situations.

View Article and Find Full Text PDF

Introduction: In the past years, it has been observed that the breeding of plants has become more challenging, as the visible difference in phenotypic data is much smaller than decades ago. With the ongoing climate change, it is necessary to breed crops that can cope with shifting climatic conditions. To select good breeding candidates for the future, phenotypic experiments can be conducted under climate-controlled conditions.

View Article and Find Full Text PDF

The image source method (ISM) is often used to simulate room acoustics due to its ease of use and computational efficiency. The standard ISM is limited to simulations of room impulse responses between point sources and omnidirectional receivers. In this work, the ISM is extended using spherical harmonic directivity coefficients to include acoustic diffraction effects.

View Article and Find Full Text PDF

Towards fully automated inner ear analysis with deep-learning-based joint segmentation and landmark detection framework.

Sci Rep

November 2023

Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, Universitätsklinikum Würzburg, 97080, Würzburg, Germany.

Automated analysis of the inner ear anatomy in radiological data instead of time-consuming manual assessment is a worthwhile goal that could facilitate preoperative planning and clinical research. We propose a framework encompassing joint semantic segmentation of the inner ear and anatomical landmark detection of helicotrema, oval and round window. A fully automated pipeline with a single, dual-headed volumetric 3D U-Net was implemented, trained and evaluated using manually labeled in-house datasets from cadaveric specimen ([Formula: see text]) and clinical practice ([Formula: see text]).

View Article and Find Full Text PDF

Background: Exercise therapy is considered effective for the treatment of motor impairment in patients with Parkinson's disease (PD). During the COVID-19 pandemic, training sessions were cancelled and the implementation of telerehabilitation concepts became a promising solution. The aim of this controlled interventional feasibility study was to evaluate the long-term acceptance and to explore initial effectiveness of a digital, home-based, high-frequency exercise program for PD patients.

View Article and Find Full Text PDF

Current 3D scanning and printing technologies offer not only state-of-the-art developments in the field of medical imaging and bio-engineering, but also cost and time effective solutions for surgical reconstruction procedures. Besides tissue engineering, where living cells are used, bio-compatible polymers or synthetic resin can be applied. The combination of 3D handheld scanning devices or volumetric imaging, (open-source) image processing packages, and 3D printers form a complete workflow chain that is capable of effective rapid prototyping of outer ear replicas.

View Article and Find Full Text PDF

Introduction: Cochlear implants (CI) are the gold standard intervention for severe to profound hearing loss, a known modifiable risk factor for dementia. However, it remains unknown whether CI use might prevent the age-related cognitive decline. Recent studies are encouraging but are limited, mainly by short follow-up periods and, for ethical reasons, lack of appropriate control groups.

View Article and Find Full Text PDF

Background: Hereditary spastic paraplegias (HSPs) cause characteristic gait impairment leading to an increased risk of stumbling or even falling. Biomechanically, gait deficits are characterized by reduced ranges of motion in lower body joints, limiting foot clearance and ankle range of motion. To date, there is no standardized approach to continuously and objectively track the degree of dysfunction in foot elevation since established clinical rating scales require an experienced investigator and are considered to be rather subjective.

View Article and Find Full Text PDF

The tumor-stroma ratio (TSR) has been repeatedly shown to be a prognostic factor for survival prediction of different cancer types. However, an objective and reliable determination of the tumor-stroma ratio remains challenging. We present an easily adaptable deep learning model for accurately segmenting tumor regions in hematoxylin and eosin (H&E)-stained whole slide images (WSIs) of colon cancer patients into five distinct classes (tumor, stroma, necrosis, mucus, and background).

View Article and Find Full Text PDF

Background: Gait variability in people with multiple sclerosis (PwMS) reflects disease progression or may be used to evaluate treatment response. To date, marker-based camera systems are considered as gold standard to analyze gait impairment in PwMS. These systems might provide reliable data but are limited to a restricted laboratory setting and require knowledge, time, and cost to correctly interpret gait parameters.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on reducing the variance in deep neural networks by using ensemble techniques, specifically fusing the results from multiple networks with different initializations and training methods.
  • Various methods were applied during training, including using random seeds, pruning, varying the number of training examples, and a combination of pruning and examples.
  • The research found that while the choice of averaging method for ensembles had minimal impact on performance metrics like accuracy and Dice coefficient, a simple mean estimate performed competitively compared to more complex methods, making it the preferred choice for practical applications.
View Article and Find Full Text PDF

In this article, we propose an evolved system design approach to ultra-wideband (UWB) radar based on pseudo-random noise (PRN) sequences, the key features of which are its user-adaptability to meet the demands provided by desired microwave imaging applications and its multichannel scalability. In light of providing a fully synchronized multichannel radar imaging system for short-range imaging as mine detection, non-destructive testing (NDT) or medical imaging, the advanced system architecture is presented with a special focus put on the implemented synchronization mechanism and clocking scheme. The core of the targeted adaptivity is provided by means of hardware, such as variable clock generators and dividers as well as programmable PRN generators.

View Article and Find Full Text PDF

In order to treat degenerative diseases, the importance of advanced therapy medicinal products has increased in recent years. The newly developed treatment strategies require a rethinking of the appropriate analytical methods. Current standards are missing the complete and sterile analysis of the product of interest to make the drug manufacturing effort worthwhile.

View Article and Find Full Text PDF

Optimal control simulations of musculoskeletal models can be used to reconstruct motions measured with optical motion capture to estimate joint and muscle kinematics and kinetics. These simulations are mutually and dynamically consistent, in contrast to traditional inverse methods. Commonly, optimal control simulations are generated by tracking generalized coordinates in combination with ground reaction forces.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examines how different additive manufacturing strategies affect the properties of NiTi specimens, including geometry, porosity, microstructure, and mechanical characteristics, which play a crucial role in designing metamaterials.
  • - Specimens were produced using laser powder bed fusion and analyzed using advanced microscopy and micro tomography techniques to explore connections between the manufacturing process, specimen dimensions, and microstructural attributes.
  • - Results showed that while the process strategy influenced the microstructure (like grain size), it did not detrimentally affect quality (porosity), and all specimens displayed a superelastic behavior, underscoring the importance of precise testing for developing new programmable metamaterials.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: