188 results match your criteria: "Fraunhofer Institute for Ceramic Technologies and Systems[Affiliation]"
Langmuir
January 2025
Department of Physics, Chair of Biophysics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, Erlangen 92054, Germany.
The term "aerophilic surface" is used to describe superhydrophobic surfaces in the Cassie-Baxter wetting state that can trap air underwater. To create aerophilic surfaces, it is essential to achieve a synergy between a low surface energy coating and substrate surface roughness. While a variety of techniques have been established to create surface roughness, the development of rapid, scalable, low-cost, waste-free, efficient, and substrate-geometry-independent processes for depositing low surface energy coatings remains a challenge.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Strasse 2, 01109 Dresden, Germany.
Coated metallic stents are the next generation of metallic stents with improved surface properties. To evaluate the degradation behavior of stents in vitro, different in vitro degradation models can be applied: (i) static immersion test: degradation under static fluid condition, (ii) fluid dynamic test: degradation under flowing fluid, and (iii) electrochemical corrosion test: degradation under the influence of electric potential. During these experimental procedures, stents interact with the simulated blood plasma, and degradation products are formed in the form of depositions on the stent surface, likewise in vivo experiments.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Department of Bio and Nanotechnology, Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Strasse 2, 01109 Dresden, Germany.
Magnesium alloys are promising biodegradable implant materials due to their excellent biocompatibility and non-toxicity. However, their poor corrosion resistance limits their application in vivo. Plasma electrolytic oxidation (PEO) is a powerful technique to improve the corrosion resistance of magnesium alloys.
View Article and Find Full Text PDFEthyl acetate is at present exclusively produced from fossil resources. Microbial synthesis of this ester from sugar-rich waste as an alternative is an aerobic process. Ethyl acetate is highly volatile and therefore stripped with the exhaust gas from the bioreactor which enables in situ product recovery.
View Article and Find Full Text PDFACS Sens
December 2024
Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea.
In this study, detailed investigations of the selective sensing capability of semiconducting metal oxide (SMO)-based gas sensors with self-assembled monolayer (SAM) functionalization were conducted. The selective gas-sensing behavior was improved by employing a simple and straightforward postmodification technique using functional SAM molecules. The chemical structure of the SAM molecules promoted interaction between the gas and SAM molecules, providing a gas selective sensing of SnO nanowires (NWs).
View Article and Find Full Text PDFFront Cell Dev Biol
August 2024
Physics Department, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria.
Bone substitutes are widely employed for applications in orthopedic surgery for the replacement of injured bone. Among the diverse methods that are used to design 3D bioceramic matrices, Freeze Foaming has gained attention, since it provides the ability to tune the shape of the created structures. One of the major problems related to these constructs is the lack of porosity at the outwards sides (holder) of the scaffold, thus reducing the cellular affinity and creating a rejection of the implant.
View Article and Find Full Text PDFBiomedicines
August 2024
G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
The aim of the study was to compare conventional sintering with additive manufacturing techniques for β-TCP bioceramics, focusing on mechanical properties and biocompatibility. A "critical" bone defect requires surgical intervention beyond simple stabilization. Autologous bone grafting is the gold standard treatment for such defects, but it has its limitations.
View Article and Find Full Text PDFJ Craniomaxillofac Surg
November 2024
Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Purpose: Correction of bony mandibular defects is a challenge in oral and maxillofacial surgery due to aesthetic and functional requirements. This study investigated the potential of a novel hybrid scaffold for bone regeneration and degradation assessment of the ceramic within the omentum majus over 6 months and the extent to which rhBMP-2 as a growth factor, alone or combined with a hydrogel, affects regeneration.
Materials And Methods: In this animal study, 10 Göttingen minipigs each had one scaffold implanted in the greater omentum.
Eur J Investig Health Psychol Educ
July 2024
Department of Epidemiology, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria.
Considerable evidence links the "Big Five" personality traits (neuroticism, extroversion, conscientiousness, agreeableness, and openness) with depression. However, potential mediating and moderating factors are less well understood. We utilized data from a cross-sectional survey of 3065 German-speaking adults from the D-A-CH region to estimate multivariable-adjusted odds ratios and 95% confidence intervalsbetween personality traits and lifetime prevalence of depression (overall and stratified by sex and age).
View Article and Find Full Text PDFBiosensors (Basel)
July 2024
Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Strasse 2, 01109 Dresden, Germany.
The selection of an appropriate transducer is a key element in biosensor development. Currently, a wide variety of substrates and working electrode materials utilizing different fabrication techniques are used in the field of biosensors. In the frame of this study, the following three specific material configurations with gold-finish layers were investigated regarding their efficacy to be used as electrochemical (EC) biosensors: (I) a silicone-based sensor substrate with a layer configuration of 50 nm SiO/50 nm SiN/100 nm Au/30-50 nm WTi/140 nm SiO/bulk Si); (II) polyethylene naphthalate (PEN) with a gold inkjet-printed layer; and (III) polyethylene terephthalate (PET) with a screen-printed gold layer.
View Article and Find Full Text PDFACS Appl Nano Mater
June 2024
Department of Inorganic Chemistry, University of Chemical and Technology-Prague, Technicka 5, 166 28 Prague 6, Czech Republic.
Designing a multifunctional device that combines solar energy conversion and energy storage is an appealing and promising approach for the next generation of green power and sustainable society. In this work, we fabricated a single-piece device incorporating undoped WSe, Re- or Nb-doped WSe photocathode, and zinc foil anode system enabling a light-assisted rechargeable aqueous zinc metal cell. Comparison of structural, optical, and photoelectric characteristics of undoped and doped WSe has further confirmed that ionic insertion of donor metal (rhenium and niobium) plays an important role in enhancing photoelectrochemical energy storage properties.
View Article and Find Full Text PDFAdv Sci (Weinh)
August 2024
Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka, 535-8585, Japan.
Gas marbles are a new family of particle-stabilized soft dispersed system with a soap bubble-like air-in-water-in-air structure. Herein, stimulus-responsive character is successfully introduced to a gas marble system for the first time using polymer particles carrying a poly(tertiary amine methacrylate) (pK ≈7) steric stabilizer on their surfaces as a particulate stabilizer. The gas marbles exhibited long-term stability when transferred onto the planar surface of liquid water, provided that the solution pH of the subphase is basic and neutral.
View Article and Find Full Text PDFWater Sci Technol
May 2024
Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstrasse 28, Dresden 01277, Germany.
Photocatalytically active ceramic flat sheet membranes based on a nanostructured titanium dioxide (TiO) coating were produced for photocatalytic water treatment. The nano-TiO layer was produced by a novel combination of magnetron sputtering of a thin titanium layer on silicon carbide (SiC) membranes, followed by electrochemical oxidation (anodization) and subsequent heat treatment (HT). Characterization by Raman spectra and field emission scanning electron microscopy proved the presence of a nanostructured anatase layer on the membranes.
View Article and Find Full Text PDFFront Bioeng Biotechnol
March 2024
Department of Oral and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
Introduction: Autologous platelet concentrate (APC) are pro-angiogenic and can promote wound healing and tissue repair, also in combination with other biomaterials. However, challenging defect situations remain demanding. 3D bioprinting of an APC based bioink encapsulated in a hydrogel could overcome this limitation with enhanced physio-mechanical interface, growth factor retention/secretion and defect-personalized shape to ultimately enhance regeneration.
View Article and Find Full Text PDFSci Rep
March 2024
Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany.
Optical fiber with YPO:Pr nanocrystals (NCs) is presented for the first time using the glass powder-NCs doping method. The method's advantage is separate preparation of NCs and glass to preserve luminescent and optical properties of NCs once they are incorporated into optical fiber. The YPO:Pr nanocrystals were synthesized by the co-precipitation and hydrothermal methods, optimized for size (< 100 nm), shape, Pr ions concentration (0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
May 2024
Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany.
Conjugated coordination polymers (c-CPs) are unique organic-inorganic hybrid semiconductors with intrinsically high electrical conductivity and excellent charge carrier mobility. However, it remains a challenge in tailoring electronic structures, due to the lack of clear guidelines. Here, we develop a strategy wherein controlling the redox state of hydroquinone/benzoquinone (HQ/BQ) ligands allows for the modulation of the electronic structure of c-CPs while maintaining the structural topology.
View Article and Find Full Text PDFMaterials (Basel)
February 2024
Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstrasse 28, 01277 Dresden, Germany.
The paper reports on effect of grain-growth inhibitors MgO, YO and MnCO as well as Ca modification on the microstructure, dielectric, ferroelectric and electrocaloric (EC) properties of BaSrSnTiO (BSSnT). Furthermore, the effects of the sintering time and temperature on the microstructure and the electrical properties of the most promising material system BaCaSrSnTiO (BCSSnT-20) are investigated. Additions of MgO ( = 1%), YO ( = 0.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2024
deepXscan GmbH, Zeppelinstr. 1, 01324 Dresden, Germany.
High-resolution imaging of Cu/low-k on-chip interconnect stacks in advanced microelectronic products is demonstrated using full-field transmission X-ray microscopy (TXM). The comparison of two lens-based laboratory X-ray microscopes that are operated at two different photon energies, 8.0 keV and 9.
View Article and Find Full Text PDFJ Funct Biomater
January 2024
Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria.
The field of bone tissue engineering is steadily being improved by novel experimental approaches. Nevertheless, microbial adhesion after scaffold implantation remains a limitation that could lead to the impairment of the regeneration process, or scaffold rejection. The present study introduces a methodology that employs laser-based strategies for the development of antimicrobial interfaces on tricalcium phosphate-hydroxyapatite (TCP-HA) scaffolds.
View Article and Find Full Text PDFNat Commun
February 2024
Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
Vertically-aligned carbon nanotube (VaCNT) membranes allow water to conduct rapidly at low pressures and open up the possibility for water purification and desalination, although the ultralow viscous stress in hydrophobic and low-tortuosity nanopores prevents surface interactions with contaminants. In this experimental investigation, steroid hormone micropollutant adsorption by VaCNT membranes is quantified and explained via the interplay of the hydrodynamic drag and friction forces acting on the hormone, and the adhesive and repulsive forces between the hormone and the inner carbon nanotube wall. It is concluded that a drag force above 2.
View Article and Find Full Text PDFAdv Mater
May 2024
Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany.
Blue energy between seawater and river water is attracting increasing interest, as one of the sustainable and renewable energy resources that can be harvested from water. Within the reverse electrodialysis applied in blue energy conversion, novel membranes with nanoscale confinement that function as selective ion transport mediums are currently in high demand for realizing higher power density. The primary challenge lies in constructing well-defined nanochannels that allow for low-energy barrier transport.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2024
deepXscan GmbH, Zeppelinstr. 1, 01324 Dresden, Germany.
High-resolution imaging of buried metal interconnect structures in advanced microelectronic products with full-field X-ray microscopy is demonstrated in the hard X-ray regime, i.e., at photon energies > 10 keV.
View Article and Find Full Text PDFMaterials (Basel)
January 2024
Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy.
Magnesium alloys are promising materials for bioresorbable implants that will improve patient life and reduce healthcare costs. However, their clinical use is prevented by the rapid degradation and corrosion of magnesium, which leads to a fast loss of mechanical strength and the formation of by-products that can trigger tissue inflammation. Here, a tannic acid coating is proposed to control the degradation of AZ31 and AZ91 alloys, starting from a previous study by the authors on AZ91.
View Article and Find Full Text PDFSmall Methods
September 2024
Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic.
This research examines vanadium-deficient VC MXene, a two-dimensional (2D) vanadium carbide with exceptional electrochemical properties for rechargeable zinc-ion batteries. Through a meticulous etching process, a V-deficient, porous architecture with an expansive surface area is achieved, fostering three-dimensional (3D) diffusion channels and boosting zinc ion storage. Analytical techniques like scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller, and X-ray diffraction confirm the formation of VC MXene and its defective porous structure.
View Article and Find Full Text PDFMaterials (Basel)
December 2023
Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
Biomaterial-centered infections of orthopedic implants remain a significant burden in the healthcare system due to sedentary lifestyles and an aging population. One approach to combat infections and improve implant osteointegration is functionalizing the implant surface with anti-infective and osteoinductive agents. In this framework, Au nanoparticles are produced on the surface of Ti-6Al-4V medical alloy by solid-state dewetting of 5 nm Au film and used as the substrate for the conjugation of a model antibiotic vancomycin via a mono-thiolated poly(ethylene glycol) linker.
View Article and Find Full Text PDF