378 results match your criteria: "Fraunhofer Institute for Cell Therapy and Immunology IZI[Affiliation]"

(1) Background: Coronavirus proteins are quite conserved amongst endemic strains (eCoV) and SARS-CoV-2. We aimed to evaluate whether peptide epitopes might serve as useful diagnostic biomarkers to stratify previous infections and COVID-19. (2) Methods: Peptide epitopes were identified at an amino acid resolution that applied a novel statistical approach to generate data sets of potential antibody binding peptides.

View Article and Find Full Text PDF

Unraveling the kinetics and pharmacology of human PepT1 using solid supported membrane-based electrophysiology.

Bioelectrochemistry

February 2024

Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany; Freie Universität Berlin, Institute of Chemistry and Biochemistry - Biochemistry, 14195 Berlin, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Germany.

The human Peptide Transporter 1 (hPepT1) is known for its broad substrate specificity and its ability to transport (pro-)drugs. Here, we present an in-depth comprehensive study of hPepT1 and its interactions with various substrates via solid supported membrane-based electrophysiology (SSME). Using hPepT1-containing vesicles, we could not identify any peptide induced pre-steady-state currents, indicating that the recorded peak currents reflect steady-state transport.

View Article and Find Full Text PDF

Modification of proteins with a broad range of chemical functionalities enables the investigation of protein structure and activity by manipulating polypeptides at single amino acid resolution. Indeed, various functional groups including bulky non-canonical amino acids like strained cyclooctenes could be introduced by the unique features of the binding pocket of the double mutant pyrrolysyl-tRNA synthetase (Y306A, Y384F), but the instable nature of the enzyme limits its application in vivo. Here, we constructed a cell-free protein production system, which increased the overall enzyme stability by combining different reaction compartments.

View Article and Find Full Text PDF

immune responses are considered major challenges in gene therapy. With the aim to lower innate immune responses directly in cells targeted by adeno-associated virus (AAV) vectors, we equipped the vector capsid with a peptide known to interfere with Toll-like receptor signaling. Specifically, we genetically inserted in each of the 60 AAV2 capsid subunits the myeloid differentiation primary response 88 (MyD88)-derived peptide RDVLPGT, known to block MyD88 dimerization.

View Article and Find Full Text PDF

Due to multifactorial reasons, such as decreased thirst and decreased total body water, elderly patients are vulnerable to dehydration. The study aims to investigate whether moderate dehydration or hyperhydration affects the blood proteome. Blood samples, medication, and bioelectrical impedance analysis (BIA) details were collected from 131 geriatric patients (77 women and 54 men aged 81.

View Article and Find Full Text PDF

Stable Chinese Hamster Ovary Suspension Cell Lines Harboring Recombinant Human Cytochrome P450 Oxidoreductase and Human Cytochrome P450 Monooxygenases as Platform for In Vitro Biotransformation Studies.

Cells

August 2023

Fraunhofer Project Group PZ-Syn, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB) Located at the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany.

In the liver, phase-1 biotransformation of drugs and other xenobiotics is largely facilitated by enzyme complexes consisting of cytochrome P450 oxidoreductase (CPR) and cytochrome P450 monooxygenases (CYPs). Generated from human liver-derived cell lines, recombinant in vitro cell systems with overexpression of defined phase-1 enzymes are widely used for pharmacological and toxicological drug assessment and laboratory-scale production of drug-specific reference metabolites. Most, if not all, of these cell lines, however, display some background activity of several CYPs, making it difficult to attribute effects to defined CYPs.

View Article and Find Full Text PDF

Cell-free protein synthesis (CFPS) has emerged as a powerful tool for the rapid synthesis and analysis of various structurally and functionally distinct proteins. These include 'difficult-to-express' membrane proteins such as large multipass ion channel receptors. Owing to their membrane localization, eukaryotic CFPS supplemented with endoplasmic reticulum (ER)-derived microsomal vesicles has proven to be an efficient system for the synthesis of functional membrane proteins.

View Article and Find Full Text PDF

Counting rare earth metals.

Cytometry A

August 2023

Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany.

View Article and Find Full Text PDF

Advanced virtual screening enables the discovery of a host-targeting and broad-spectrum antiviral agent.

Antiviral Res

September 2023

Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia; Denovo Sciences Inc., Yerevan, Armenia. Electronic address:

We employed an advanced virtual screening (AVS) approach to identify potential inhibitors of human dihydroorotate dehydrogenase (DHODH), a validated target for development of broad-spectrum antivirals. We screened a library of 495118 compounds and identified 495 compounds that exhibited better binding scores than the reference ligands involved in the screening. From the top 100 compounds, we selected 28 based on their consensus docking scores and structural novelty.

View Article and Find Full Text PDF

NIH/3T3 Fibroblasts Selectively Activate T Cells Specific for Posttranslationally Modified Collagen Type II.

Int J Mol Sci

June 2023

Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden.

It has been shown that synovial fibroblasts (SF) play a key role in the initiation of inflammation and joint destruction, leading to arthritis progression. Fibroblasts may express major histocompatibility complex class II region (MHCII) molecules, and thus, they could be able to process and present antigens to immunocompetent cells. Here we examine whether different types of fibroblasts (synovial, dermal, and thymic murine fibroblasts, destructive LS48 fibroblasts, and noninvasive NIH/3T3 fibroblasts) may be involved in the initiation of rheumatoid arthritis (RA) pathogenesis and can process and present type II collagen (COL2)-an autoantigen associated with RA.

View Article and Find Full Text PDF

Electroporation of cells is a widely-used tool to transport molecules such as proteins or nucleic acids into cells or to extract cellular material. However, bulk methods for electroporation do not offer the possibility to selectively porate subpopulations or single cells in heterogeneous cell samples. To achieve this, either presorting or complex single-cell technologies are required currently.

View Article and Find Full Text PDF

Radiation-attenuated intracellular parasites are promising immunization strategies. The irradiated parasites are able to invade host cells but fail to fully replicate, which allows for the generation of an efficient immune response. Available radiation technologies such as gamma rays require complex shielding constructions and are difficult to be integrated into pharmaceutical production processes.

View Article and Find Full Text PDF

Ubiquitin-specific proteases represent a family of enzymes that catalyze the cleavage of ubiquitin from specific substrate proteins to regulate their activity. USP48 is a rarely studied USP, which has recently been linked to inflammatory signaling via regulation of the transcription factor nuclear factor kappa B. Nonetheless, a crystal structure of USP48 has not yet been resolved and potent inhibitors are not known.

View Article and Find Full Text PDF

With more than 20 Food and Drug Administration (FDA)-approved poly (ethylene glycol) (PEG) modified drugs on the market, PEG is the gold standard polymer in bioconjugation. The coupling improves stability, efficiency and can prolong blood circulation time of therapeutic proteins. Even though PEGylation is described as non-toxic and non-immunogenic, reports accumulate with data showing allergic reactions to PEG.

View Article and Find Full Text PDF

Oligomeric ion channels are abundant in nature. However, the recombinant expression in cell culture-based systems remains tedious and challenging due to negative side effects, limiting the understanding of their role in health and disease. Accordingly, in this work, we demonstrate the cell-free synthesis (CFS) as an alternative platform to study the assembly of two-pore domain potassium channels (K) within endogenous endoplasmic reticulum-derived microsomes.

View Article and Find Full Text PDF

Background: The histogenetic origin of atypical fibroxanthoma (AFX) and pleomorphic dermal sarcoma (PDS) has not been definitively elucidated. In addition to a fibroblastic origin, a keratinocytic differentiation is discussed due to strong clinical, histomorphological and molecular genetic similarities with undifferentiated cutaneous squamous cell carcinoma (cSCC).

Patients And Methods: 56 cases (36 AFXs, 8 PDSs, 12 undifferentiated cSCCs) were evaluated for their clinical, histomorphological, and immunohistochemical characteristics.

View Article and Find Full Text PDF

Enriched cell-free and cell-based native membrane derived vesicles (nMV) enabling rapid in-vitro electrophysiological analysis of the voltage-gated sodium channel 1.5.

Biochim Biophys Acta Biomembr

June 2023

Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany; Technische Universität Berlin, Institute of Biotechnology, Straße des 17. Juni 135, 10623 Berlin, Germany; Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany; Faculty of Health Science, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Germany.

Here, we demonstrate the utility of native membrane derived vesicles (nMVs) as tools for expeditious electrophysiological analysis of membrane proteins. We used a cell-free (CF) and a cell-based (CB) approach for preparing protein-enriched nMVs. We utilized the Chinese Hamster Ovary (CHO) lysate-based cell-free protein synthesis (CFPS) system to enrich ER-derived microsomes in the lysate with the primary human cardiac voltage-gated sodium channel 1.

View Article and Find Full Text PDF

Natural killer (NK) cells are a subset of lymphocytes that offer great potential for cancer immunotherapy due to their natural anti-tumor activity and the possibility to safely transplant cells from healthy donors to patients in a clinical setting. However, the efficacy of cell-based immunotherapies using both T and NK cells is often limited by a poor infiltration of immune cells into solid tumors. Importantly, regulatory immune cell subsets are frequently recruited to tumor sites.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are of outstanding pharmacological interest as they are abundant in cell membranes where they perform diverse functions that are closely related to the vitality of cells. The analysis of GPCRs in natural membranes is laborious, as established methods are almost exclusively cell culture-based and only a few methods for immobilization in a natural membrane outside the cell are known. Within this study, we present a one-step, fast and robust immobilization strategy of the GPCR glucagon-like peptide 1 receptor (GLP-1R).

View Article and Find Full Text PDF

Human respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infections in infants, the elderly, and the immunocompromised, yet no licensed vaccine and only limited therapeutic options for prevention and treatment are available, which poses a global health challenge and emphasizes the urgent medical need for novel antiviral agents. In the current study, a novel potent small molecule inhibitor of RSV was identified by performing a screening and structure optimization campaign, wherein a naturally occurring dicaffeoylquinic acid (DCQA) compound served as a chemical starting point. The reported benzamide derivative inhibitor, designated as 2f, was selected for its improved stability and potent antiviral activity from a series of investigated structurally related compounds.

View Article and Find Full Text PDF

Synthesis and structure-activity relationships of pyrazole-based inhibitors of meprin α and β.

J Enzyme Inhib Med Chem

December 2023

Department of Drug Design and Target Validation MWT, Fraunhofer Institute for Cell Therapy and Immunology IZI, Biocenter, Halle (Saale), Germany.

Targeting metalloproteinases has been in the focus of drug design for a long time. However, meprin α and β emerged as potential drug targets just recently and are linked to several diseases with different pathological background. Nevertheless, the validation of meprins as suitable drug targets still requires highly potent and selective inhibitors as chemical probes to elucidate their role in pathophysiology.

View Article and Find Full Text PDF
Article Synopsis
  • Richter syndrome (RS) represents the transformation of chronic lymphocytic leukemia (CLL) into an aggressive form of lymphoma, primarily diffuse large B-cell lymphoma (DLBCL).
  • Researchers analyzed 58 primary RS samples using DNA methylation and transcriptome profiling, leading to the identification of epigenetic patterns and a method to assess CLL-RS clonal relationships without the original CLL tumor DNA.
  • The study developed classifiers based on DNA and transcriptomic data, revealing a poor-prognosis subset of DLBCL that shares similarities with RS, highlighting the potential to improve prognosis assessment and treatment strategies for affected patients.
View Article and Find Full Text PDF

The extracellular matrix (ECM) obtained by decellularization provides scaffolds with the natural complex architecture and biochemical composition of the target organ. Whole kidney decellularization by perfusion uses the vasculature to remove cells leaving a scaffold that can be recellularized with patient-specific cells. However, decellularization and recellularization are highly complex processes that require intensive optimization of various parameters.

View Article and Find Full Text PDF

Myelodysplastic syndromes (MDS) and their progression to secondary acute myeloid leukemia (sAML) are associated with an altered protein expression including extracellular matrix (ECM) components thereby promoting an inflammatory environment. Since the role of the proteoglycan biglycan (BGN) as an inflammatory mediator has not yet been investigated in both diseases and might play a role in disease progression, its expression and/or function was determined in cell lines and bone marrow biopsies (BMBs) of MDS and sAML patients and subpopulations of MDS stem cells by Western blot and immunohistochemistry. The bone marrow (BM) microenvironment was analyzed by multispectral imaging, patients' survival by Cox regression.

View Article and Find Full Text PDF