4 results match your criteria: "France. Electronic address: severine.boillee@sorbonne-universite.fr.[Affiliation]"

Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons. The limited efficacy of recent therapies in clinical development may be linked to lack of drug penetration to the affected motor neurons due to the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB).

Methods: In this work, the safety and efficacy of repeated short transient opening of the BSCB by low intensity pulsed ultrasound (US, sonication) was studied in females of an ALS mouse model (B6.

View Article and Find Full Text PDF

Local and remote interactions between macrophages and microglia in neurological conditions.

Curr Opin Immunol

February 2022

Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France. Electronic address:

In the central nervous system (CNS) parenchymal macrophages are called microglial cells and have a distinct developmental origin and can self-renew. However, during pathological conditions, when the blood-brain-barrier becomes leaky, including after injury, in multiple sclerosis or with glioblastoma, monocyte-derived macrophages (MDM) infiltrate the CNS and cohabit with microglia. In neurodegenerative diseases such as Alzheimer's disease or ALS, MDM mostly do not enter the CNS, and instead microglia take several identities.

View Article and Find Full Text PDF

New advances in Amyotrophic Lateral Sclerosis genetics: Towards gene therapy opportunities for familial and young cases.

Rev Neurol (Paris)

May 2021

Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR7225, Sorbonne Université, UPMC Univ Paris 6 UMRS1127, 75013 Paris, France. Electronic address:

Due to novel gene therapy opportunities, genetic screening is no longer restricted to familial cases of ALS (FALS) cases but also aplies to the sporadic populations (SALS). Screening of four main genes (C9orf72, SOD1, TARDBP and FUS) identified the causes in 15% of Amyotrophic Lateral Sclerosis (ALS) patients (two third of the familial cases and 8% of the sporadic ones) but their respective contribution to ALS phenotype varies according the age of disease onset. The genetic overlap between ALS and other diseases is expanding and includes frontotemporal dementia, Paget's Disease of Bone, myopathy for adult cases, HSP and CMT for young cases highlighing the importance of retrieving the exhaustive familial history for each indivdual with ALS.

View Article and Find Full Text PDF

Neuroinflammation is a hallmark of Amyotrophic Lateral Sclerosis (ALS) in hSOD1 mouse models where microglial cells contribute to the progressive motor neuron degenerative process. S100-A8 and S100-A9 (also known as MRP8 and MRP14, respectively) are cytoplasmic proteins expressed by inflammatory myeloid cells, including microglia and macrophages. Mainly acting as a heterodimer, S100-A8/A9, when secreted, can activate Toll-like Receptor 4 on immune cells, leading to deleterious proinflammatory cytokine production.

View Article and Find Full Text PDF