3 results match your criteria: "France. Electronic address: laura.baciou@universite-paris-saclay.fr.[Affiliation]"

Article Synopsis
  • The phagocyte NADPH oxidase (NOX2) is essential for the innate immune system, producing reactive oxygen species that help destroy pathogens.
  • Researchers used circular-dichroism analyses alongside past data to assess structural models of the NADPH oxidase complex created by the AI program AlphaFold2.
  • The findings detail how specific interactions and disordered regions within proteins, particularly between p47 and cytb, play a critical role in the assembly and activation of the NADPH oxidase complex.
View Article and Find Full Text PDF

Poldip2 was shown to be involved in oxidative signaling to ensure certain biological functions. It was proposed that, in VSMC, by interaction with the Nox4-associated membrane protein p22, Poldip2 stimulates the level of reactive oxygen species (ROS) production. In vitro, with fractionated membranes from HEK393 cells over-expressing Nox4, we confirmed the up-regulation of NADPH oxidase 4 activity by the recombinant and purified Poldip2.

View Article and Find Full Text PDF

Neutrophils are key cells from the innate immune system that destroy invading bacteria or viruses, thanks mainly to the non-mitochondrial reactive oxygen species (ROS) generated by the enzyme NADPH oxidase. Our aim was to study the response of neutrophils to situations of oxidative stress with emphasis on the impact on the NADPH oxidase complex. To mimic oxidative stress, we used gamma irradiation that generated ROS (OH, O and HO) in a quantitative controlled manner.

View Article and Find Full Text PDF