59 results match your criteria: "Fox Chase Chemical Diversity Center[Affiliation]"

A small molecule that targets the processivity factor of molluscum contagiosum virus has therapeutic potential.

Antiviral Res

March 2023

Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, USA; Abramson Cancer Center, School of Medicine, University of Pennsylvania, USA. Electronic address:

Molluscum contagiosum (MC) is an infectious disease that occurs only in humans with a tropism that is narrowly restricted to the outermost epidermal layer of the skin. Molluscum contagiosum virus (MCV) is the causative agent of MC which produces skin lesions that can persist for months to several years. MCV is efficiently transmitted by direct physical contact or by indirect contact with fomites.

View Article and Find Full Text PDF

Troriluzole inhibits methamphetamine place preference in rats and normalizes methamphetamine-evoked glutamate carboxypeptidase II (GCPII) protein levels in the mesolimbic pathway.

Drug Alcohol Depend

January 2023

Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA. Electronic address:

Riluzole, approved to manage amyotrophic lateral sclerosis, is mechanistically unique among glutamate-based therapeutics because it reduces glutamate transmission through a dual mechanism (i.e., reduces glutamate release and enhances glutamate reuptake).

View Article and Find Full Text PDF

The guanidine moiety is typically a highly basic group, and can be found in a wide variety of drugs, such as zanamivir (Relenza) and metformin (Fortamet), as well as in biologically active compounds for numerous disease areas, including central nervous system (CNS) diseases and chemotherapeutics. This review will focus on antifungal agents which contain at least one guanidine group, for the treatment of human-related fungal pathogens, described in the literature between 2004 and 2022. These compounds include small molecules, steroids, polymers, metal complexes, sesquiterpenes, natural products, and polypeptides.

View Article and Find Full Text PDF

While antiretroviral drugs have transformed the lives of HIV-infected individuals, chronic treatment is required to prevent rebound from viral reservoir cells. People living with HIV also are at higher risk for cardiovascular and neurocognitive complications, as well as cancer. Finding a cure for HIV-1 infection is therefore an essential goal of current AIDS research.

View Article and Find Full Text PDF

Paradoxical anxiolytic effect of the 'bath salt' synthetic cathinone MDPV during early abstinence is inhibited by a chemokine CXCR4 or CCR5 receptor antagonist.

Drug Alcohol Depend

January 2022

Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA. Electronic address:

Chemokine CXCR4 and CCR5 receptors are best known as HIV co-entry receptors, but evidence that CXCR4 or CCR5 blockade reduces rewarding and locomotor-stimulant effects of psychostimulants in rats suggests a role in psychostimulant use disorders. We investigated the impact of CXCR4 or CCR5 receptor antagonism on anxiety-related effects of the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV) in the elevated zero-maze (EZM) assay. Rats exposed to a 4-day MDPV binge dosing paradigm and tested 24 or 72 h post-treatment spent more time in the open compartment at the 24-h time point but less time at the 72-h post-binge time point.

View Article and Find Full Text PDF

Synthesis and evaluation of potent novel inhibitors of human sulfide:quinone oxidoreductase.

Bioorg Med Chem Lett

December 2021

Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA. Electronic address:

Article Synopsis
  • * SQOR is an enzyme in the mitochondria that converts HS into a different form of sulfur, and inhibiting this enzyme could be a new treatment strategy for heart failure with reduced ejection fraction.
  • * Using high-throughput screening and structural analysis, we identified strong SQOR inhibitors, including one with an IC value of 29 nM, showing promise for further testing in living organisms.
View Article and Find Full Text PDF

Aims: Hydrogen sulfide (H2S) is a potent signalling molecule that activates diverse cardioprotective pathways by post-translational modification (persulfidation) of cysteine residues in upstream protein targets. Heart failure patients with reduced ejection fraction (HFrEF) exhibit low levels of H2S. Sulfide:quinone oxidoreductase (SQOR) catalyses the first irreversible step in the metabolism of H2S and plays a key role in regulating H2S-mediated signalling.

View Article and Find Full Text PDF

Marburg virus (MARV) VP40 protein (mVP40) directs egress and spread of MARV, in part, by recruiting specific host WW domain-containing proteins via its conserved PPxY late (L) domain motif to facilitate efficient virus-cell separation. We reported previously that small-molecule compounds targeting the viral PPxY/host WW domain interaction inhibited VP40-mediated egress and spread. Here, we report on the antiviral potency of novel compound FC-10696, which emerged from extensive structure-activity relationship (SAR) of a previously described series of PPxY inhibitors.

View Article and Find Full Text PDF

Invasive fungal infections have become an important healthcare issue due in large part to high mortality rates under standard of care (SOC) therapies creating an urgent need for new and effective anti-fungal agents. We have developed a series of non-peptide, structurally-constrained analogs of host defence proteins that have distinct advantages over peptides for pharmaceutical uses. Here we report the chemical optimization of bis-guanidine analogs focused on alterations of the central aryl core and the connection of it to the terminal guanidines.

View Article and Find Full Text PDF

Purpose: Acyclovir is most commonly used for treating ocular Herpes Keratitis, a leading cause of infectious blindness. However, emerging resistance to Acyclovir resulting from mutations in the thymidine kinase gene of Herpes Simplex Virus -1 (HSV-1), has prompted the need for new therapeutics directed against a different viral protein. One novel target is the HSV-1 Processivity Factor which is essential for tethering HSV-1 Polymerase to the viral genome to enable long-chain DNA synthesis.

View Article and Find Full Text PDF

Disseminated infection by species represents a common, often life-threatening condition. Increased resistance to current antifungal drugs has led to an urgent need to develop new antifungal drugs to treat this pathogen. However, in vivo screening of candidate antifungal compounds requires large numbers of animals and using immunosuppressive agents to allow for fungal dissemination.

View Article and Find Full Text PDF

Ebselen (EBS) is an organo-selenium-containing compound that has anti-inflammatory, antitumor, and antibacterial properties. EBS is being explored as a possible treatment for reperfusion injury and stroke and is under clinical trials as a mimetic of lithium for the treatment of bipolar disorder [Mota et al. 2020, 74 (7), 1-6] and noise-induced hearing loss as a result of these actives [Martini et al.

View Article and Find Full Text PDF

The human gamma-herpesviruses Epstein-Barr virus (EBV) (HHV-4) and Kaposi's sarcoma-associated herpesvirus (KSHV) (HHV-8) are responsible for a number of diseases, including various types of cancer. Epstein-Barr nuclear antigen 1 (EBNA1) from EBV and latency-associated nuclear antigen (LANA) from KSHV are viral-encoded DNA-binding proteins that are essential for the replication and maintenance of their respective viral genomes during latent, oncogenic infection. As such, EBNA1 and LANA are attractive targets for the development of small-molecule inhibitors.

View Article and Find Full Text PDF

Tuning isoform selectivity and bortezomib sensitivity with a new class of alkenyl indene PDI inhibitor.

Eur J Med Chem

January 2020

Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, USA. Electronic address:

Protein disulfide isomerase (PDI, PDIA1) is an emerging therapeutic target in oncology. PDI inhibitors have demonstrated a unique propensity to selectively induce apoptosis in cancer cells and overcome resistance to existing therapies, although drug candidates have not yet progressed to the stage of clinical development. We recently reported the discovery of lead indene compound E64FC26 as a potent pan-PDI inhibitor that enhances the cytotoxic effects of proteasome inhibitors in panels of Multiple Myeloma (MM) cells and MM mouse models.

View Article and Find Full Text PDF

Tight-Binding Hydroxypyrazole HIV-1 Nef Inhibitors Suppress Viral Replication in Donor Mononuclear Cells and Reverse Nef-Mediated MHC-I Downregulation.

ACS Infect Dis

February 2020

Department of Microbiology and Molecular Genetics , University of Pittsburgh School of Medicine, Suite 523 Bridgeside Point II, 450 Technology Drive , Pittsburgh , Pennsylvania 15219 , United States.

The HIV-1 Nef accessory factor is critical to the viral life cycle and promotes immune escape of infected cells via downregulation of cell-surface MHC-I. Previously, we discovered small molecules that bind directly to Nef and block many of its functions, including enhancement of viral infectivity and replication in T cell lines. These compounds also restore cell-surface MHC-I expression in HIV-infected CD4 T cells from AIDS patients, enabling recognition and killing by autologous cytotoxic T lymphocytes (CTLs).

View Article and Find Full Text PDF

The iron storage protein bacterioferritin (BfrB) is central to bacterial iron homeostasis. The mobilization of iron from BfrB, which requires binding by a cognate ferredoxin (Bfd), is essential to the regulation of cytosolic iron levels in P. aeruginosa.

View Article and Find Full Text PDF

Host-defense peptides (HDPs) have an important therapeutic potential against microbial infections but their metabolic instability and cellular cytotoxicity have limited their utility. To overcome these limitations, we utilized five small-molecule, nonpeptide HDP mimetics (smHDPMs) and tested their effects on cytotoxicity, antimicrobial activity, and mast cell (MC) degranulation. None of the smHDPMs displayed cytotoxicity against mouse 3T3 fibroblasts or human transformed liver HepG2 cells.

View Article and Find Full Text PDF

Effects of dopaminergic and serotonergic compounds in rats trained to discriminate a high and a low training dose of the synthetic cathinone mephedrone.

Psychopharmacology (Berl)

March 2019

Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA, 19140, USA.

Rationale: The underlying pharmacological mechanisms of mephedrone, especially as related to interactions with different neurotransmitter systems, are a critical area of study as mephedrone continues to be abused.

Objective: Direct-acting 5-HT receptor agonists and antagonists and D receptor antagonists were examined in two groups of rats trained to discriminate mephedrone. A high dose of mephedrone was trained to extend previous results with traditional monoamine transporter inhibitors and substrate releasers.

View Article and Find Full Text PDF

In our previous studies of the molecular mechanisms of poly(ADP-ribose) polymerase 1 (PARP-1)-mediated transcriptional regulation we identified a novel class of PARP-1 inhibitors targeting the histone-dependent route of PARP-1 activation. Because histone-dependent activation is unique to PARP-1, non-NAD-like PARP-1 inhibitors have the potential to bypass the off-target effects of classical NAD-dependent PARP-1 inhibitors, such as olaparib, veliparib, and rucaparib. Furthermore, our recently published studies demonstrate that, compared to NAD-like PARP-1 inhibitors that are used clinically, the non-NAD-like PARP-1 inhibitor 5F02 exhibited superior antitumor activity in cell and animal models of human prostate cancer (PC).

View Article and Find Full Text PDF
Article Synopsis
  • Epstein-Barr virus (EBV) is linked to 1-2% of human cancers, such as various lymphomas and gastric carcinoma, due to its persistent latent infection promoting tumor growth.
  • EBNA1, a viral protein present in all EBV-related tumors, is crucial for viral functions and presents a target for developing treatments.
  • Researchers have identified specific inhibitors that block EBNA1's DNA binding activity, showing effectiveness in lab models by suppressing tumor growth and altering important signaling pathways in nasopharyngeal carcinoma.
View Article and Find Full Text PDF

Background And Purpose: Purinergic P2X7 receptors are present on neurons, astrocytes and microglia and activated by extracellular ATP. Since P2X7 receptor activation releases endogenous substrates (e.g.

View Article and Find Full Text PDF

Many antibiotics, either directly or indirectly, cause DNA damage thereby activating the bacterial DNA damage (SOS) response. SOS activation results in expression of genes involved in DNA repair and mutagenesis, and the regulation of the SOS response relies on two key proteins, LexA and RecA. Genetic studies have indicated that inactivating the regulatory proteins of this response sensitizes bacteria to antibiotics and slows the appearance of resistance.

View Article and Find Full Text PDF

Mutation and structure guided discovery of an antiviral small molecule that mimics an essential C-Terminal tripeptide of the vaccinia D4 processivity factor.

Antiviral Res

February 2019

Department of Microbiology, School of Dental Medicine and the Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Electronic address:

The smallpox virus (variola) remains a bioterrorism threat since a majority of the human population has never been vaccinated. In the event of an outbreak, at least two drugs against different targets of variola are critical to circumvent potential viral mutants that acquire resistance. Vaccinia virus (VACV) is the model virus used in the laboratory for studying smallpox.

View Article and Find Full Text PDF