12 results match your criteria: "Florey Institute and The University of Melbourne[Affiliation]"

Article Synopsis
  • Cognitive resilience is when people don't show mental decline even if they have signs of Alzheimer's in their brains.
  • Measuring cognitive resilience is tricky because it can't be seen directly, and one common method used might give wrong results.
  • The new method we suggest uses machine learning to improve how we measure cognitive resilience, making it more accurate and relying less on guesses about the data.
View Article and Find Full Text PDF

Alzheimer's disease (AD) is a complex, progressive primary neurodegenerative disease. Since pivotal genetic studies in 1993, the ε4 allele of the apolipoprotein E gene (APOE ε4) has remained the strongest single genome-wide associated risk variant in AD. Scientific advances in APOE biology, AD pathophysiology and ApoE-targeted therapies have brought APOE to the forefront of research, with potential translation into routine AD clinical care.

View Article and Find Full Text PDF

Introduction: Amyloid beta and tau pathology are the hallmarks of sporadic Alzheimer's disease (AD) and autosomal dominant AD (ADAD). However, Lewy body pathology (LBP) is found in ≈ 50% of AD and ADAD brains.

Methods: Using an α-synuclein seed amplification assay (SAA) in cerebrospinal fluid (CSF) from asymptomatic (n = 26) and symptomatic (n = 27) ADAD mutation carriers, including 12 with known neuropathology, we investigated the timing of occurrence and prevalence of SAA positive reactivity in ADAD in vivo.

View Article and Find Full Text PDF

Objective: Identifying cerebrospinal fluid measures of the microtubule binding region of tau (MTBR-tau) species that reflect tau aggregation could provide fluid biomarkers that track Alzheimer's disease related neurofibrillary tau pathological changes. We examined the cerebrospinal fluid (CSF) MTBR-tau species in dominantly inherited Alzheimer's disease (DIAD) mutation carriers to assess the association with Alzheimer's disease (AD) biomarkers and clinical symptoms.

Methods: Cross-sectional and longitudinal CSF from 229 DIAD mutation carriers and 130 mutation non-carriers had sequential characterization of N-terminal/mid-domain phosphorylated tau (p-tau) followed by MTBR-tau species and tau positron emission tomography (tau PET), other soluble tau and amyloid biomarkers, comprehensive clinical and cognitive assessments, and brain magnetic resonance imaging of atrophy.

View Article and Find Full Text PDF

Prior to the usual clinical symptoms of dementia, there can be subtle changes in cognitive function that differ from the normal age-related cognitive decline, which has been termed mild cognitive impairment (MCI). The increase in the numbers of individuals with possible MCI presenting to health care professionals, notably, General Practitioners (GPs), is going to rise dramatically in the coming years. With ever increasing demands on GPs, it is therefore timely to provide information that can be accessed by health care professionals to assist them in making appropriate diagnoses and to provide the most relevant, evidence-based treatment options.

View Article and Find Full Text PDF
Article Synopsis
  • - The practice of measuring cerebrospinal fluid (CSF) biomarkers for diagnosing Alzheimer's disease (AD) is inconsistent across different medical centers, leading to varied interpretations of the same results.
  • - A study involving 40 centers worldwide analyzed their analytical protocols and reports to create a consensus on how to interpret CSF biomarker profiles effectively.
  • - The findings highlighted that while the analytical methods were largely similar, there was significant variability in how results were reported; as a result, harmonized reporting formats were established for clearer communication among laboratories.
View Article and Find Full Text PDF

Longitudinal observational cohort studies are being conducted worldwide to understand cognition, biomarkers, and the health of the aging population better. Cross-cohort comparisons and networks of registries in Alzheimer's disease (AD) foster scientific exchange, generate insights, and contribute to the evolving clinical science in AD. A scientific working group was convened with invited investigators from established cohort studies in AD, in order to form a research collaboration network as a resource to address important research questions.

View Article and Find Full Text PDF

The Amyloid-β Pathway in Alzheimer's Disease.

Mol Psychiatry

October 2021

Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA.

Breakthroughs in molecular medicine have positioned the amyloid-β (Aβ) pathway at the center of Alzheimer's disease (AD) pathophysiology. While the detailed molecular mechanisms of the pathway and the spatial-temporal dynamics leading to synaptic failure, neurodegeneration, and clinical onset are still under intense investigation, the established biochemical alterations of the Aβ cycle remain the core biological hallmark of AD and are promising targets for the development of disease-modifying therapies. Here, we systematically review and update the vast state-of-the-art literature of Aβ science with evidence from basic research studies to human genetic and multi-modal biomarker investigations, which supports a crucial role of Aβ pathway dyshomeostasis in AD pathophysiological dynamics.

View Article and Find Full Text PDF

Longitudinal Accumulation of Cerebral Microhemorrhages in Dominantly Inherited Alzheimer Disease.

Neurology

March 2021

From the Departments of Radiology (N.J.-M., T.M.B., B.A.G., G.C., P.M., R.C.H., T.L.S.B.), Neurology (E.M., J.H., B.M.A., R.J.P., J.C.M., R.J.B.), Psychological and Brain Sciences (J.H.), Psychiatry (C.C., C.M.K.), and Pathology and Immunology (R.J.P.) and Division of Biostatistics (G.W., C.X.), Washington University School of Medicine, St. Louis, MO; Banner Alzheimers Institute (Y.S.), Phoenix, AZ; Department of Cognitive Neurology and Neuropsychology (R.F.A.), Instituto de Investigaciones Neurológicas Fleni, Buenos Aires, Argentina; Departments of Neurology and Clinical and Translational Science (S.B.B.), University of Pittsburgh School of Medicine, PA; Department of Neurology (A.M.B.), Taub Institute for Research on Alzheimers Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY; Neuroscience Research Australia (W.S.B., P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales (W.S.B.), Sydney, Australia; Dementia Research Centre and UK Dementia Research Institute (D.M.C., N.C.F., A.O.), UCL Queen Square Institute of Neurology, London, UK; Departments of Neurology (J.P.C., K.A.J.) and Radiology (K.A.J.), Massachusetts General Hospital, Boston; Department of Neurology (H.C.C., J.M.R.), Keck School of Medicine of USC, Los Angeles, CA; Department of Psychiatry and Human Behavior (S.C., A.K.W.L., S.S.), Memory and Aging Program, Butler Hospital, Brown University Alpert Medical School, Providence, RI; Center for Neuroimaging, Department of Radiology and Imaging Science (M.R.F., A.J.S.), Department of Pathology and Laboratory Medicine (B.G.), and Indiana Alzheimers Disease Research Center (A.J.S.), Indiana University School of Medicine, Indianapolis; Departments of Molecular Imaging and Neurology (M.F.), Royal Prince Alfred Hospital, University of Sydney, Australia; Department of Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL; German Center for Neurodegenerative Diseases (DZNE) (C.L., J.L., I.Y.); Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy (C.L.), University of Tübingen; Department of Neurology (J.L., I.Y.), Ludwig-Maximilians-Universität München; Munich Cluster for Systems Neurology (SyNergy) (J.L., I.Y.), Germany; Florey Institute and The University of Melbourne (C.L.M.), Australia; Department of Neurology (J.M.N.), Columbia University Irving Medical Center, New York, NY; Department of Radiology (K.K., C.R.J., G.M.P.), Mayo Clinic, Rochester, MN; Department of Molecular Imaging and Therapy (C.C.R., V.L.V.), Austin Health, University of Melbourne, Heidelberg, Australia; Clinical Research Center for Dementia (H.S.), Osaka City University; Department of Neurology (M.S.), Hirosaki University Graduate School of Medicine; and Department of Neurology (K.S.), The University of Tokyo, Japan.

Objective: To investigate the inherent clinical risks associated with the presence of cerebral microhemorrhages (CMHs) or cerebral microbleeds and characterize individuals at high risk for developing hemorrhagic amyloid-related imaging abnormality (ARIA-H), we longitudinally evaluated families with dominantly inherited Alzheimer disease (DIAD).

Methods: Mutation carriers (n = 310) and noncarriers (n = 201) underwent neuroimaging, including gradient echo MRI sequences to detect CMHs, and neuropsychological and clinical assessments. Cross-sectional and longitudinal analyses evaluated relationships between CMHs and neuroimaging and clinical markers of disease.

View Article and Find Full Text PDF

Longitudinal cognitive and biomarker changes in dominantly inherited Alzheimer disease.

Neurology

October 2018

From the Department of Neurology (E.M., J.H., V.B., A.M.F., D.M.H., J.C.M., K.P., R.J.B.), Division of Biostatistics (G.W., C.X.), Department of Radiology (B.A.G., T.L.S.B., D.S.M.), and Department of Pathology (N.J.C.), Washington University School of Medicine, Saint Louis, MO; Department of Neuroscience (A.M.J.), Icahn School of Medicine at Mount Sinai, New York, NY; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) (R.A.), Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina; University of Pittsburgh School of Medicine (S.B.B., W.K.), PA; College of Physicians and Surgeons (J.N.), Columbia University, New York, NY; Department of Neurology (J.R.), Keck School of Medicine of University of Southern California, Los Angeles; Department of Neurology (B.G., M.F.), Indiana University, Indianapolis; Massachusetts General Hospital (R.A.S., J.C.), Harvard Medical School, Boston; Butler Hospital and Brown University (S.S.), Providence, RI; Department of Neurology (N.R.G.-R.), Mayo Clinic Jacksonville, FL; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney; The Florey Institute and the University of Melbourne (C.M.), Parkville, Australia; Dementia Research Centre, Institute of Neurology (M.N.R., N.C.F.), University College London, UK; German Center for Neurodegenerative Diseases (DZNE) Munich (J.L.); Department of Neurology (J.L.), Ludwig-Maximilians Universität München; German Center for Neurodegenerative Diseases (DZNE) Tübingen (M.J.); and Hertie-Institute for Clinical Brain Research (M.J.), University of Tübingen, Germany.

Objective: To assess the onset, sequence, and rate of progression of comprehensive biomarker and clinical measures across the spectrum of Alzheimer disease (AD) using the Dominantly Inherited Alzheimer Network (DIAN) study and compare these to cross-sectional estimates.

Methods: We conducted longitudinal clinical, cognitive, CSF, and neuroimaging assessments (mean of 2.7 [±1.

View Article and Find Full Text PDF

Amyloid imaging plays an important role in the research and diagnosis of dementing disorders. Substantial variation in quantitative methods to measure brain amyloid burden exists in the field. The aim of this work is to investigate the impact of methodological variations to the quantification of amyloid burden using data from the Dominantly Inherited Alzheimer's Network (DIAN), an autosomal dominant Alzheimer's disease population.

View Article and Find Full Text PDF