4 results match your criteria: "Flinders University Adelaide SA 5042 Australia colin.raston@flinders.edu.au.[Affiliation]"
Polysulfone (PSF) was prepared under high shear in a vortex fluidic device (VFD) operating in confined mode, and its properties compared with that prepared using batch processing. This involved reacting the pre-prepared disodium salt of bisphenol A (BPA) with a 4,4'-dihalodiphenylsulfone under anhydrous conditions. Scanning electron microscopy (SEM) established that in the thin film microfluidic platform, the PSF particles are sheet-like, for short reaction times, and fibrous for long reaction times, in contrast to spherical like particles for the polymer prepared using the conventional batch synthesis.
View Article and Find Full Text PDFNanoscale Adv
December 2019
Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5042 Australia
A method has been developed to slice boron nitride nanotubes BNNTs under continuous flow in a vortex fluidic device (VFD), along with a method to partially purify the as received BNNT containing material. The latter involves heating the BNNTs to 600 °C followed by dispersing in a 1 : 3 isopropyl alcohol (IPA) and water mixture at 100 °C. The VFD mediated slicing of the BNNTs comprises irradiating the rapidly rotating glass tube (20 mm OD) with a pulsed Nd:YAG laser.
View Article and Find Full Text PDFRSC Adv
July 2019
Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5042 Australia
Exfoliation or scrolling of hexagonal boron nitride (h-BN) occurs in a vortex fluidic device (VFD) operating under continuous flow, with a tilt angle of -45° relative to the horizontal position. This new VFD processing strategy is effective in avoiding the build-up of material that occurs when the device is operated using the conventional tilt angle of +45°, where the h-BN precursor and scrolls are centrifugally held against the wall of the tube. At a tilt angle of -45° the downward flow aided by gravity facilitates material exiting the tube with the exfoliation of h-BN and formation of h-BN scrolls then optimized by systematically varying the other VFD operating parameters, including flow rate and rotational speed, along with concentration of h-BN and the choice of solvent.
View Article and Find Full Text PDFRSC Adv
December 2018
Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5042 Australia
Hexagonal boron nitride (h-BN) is rendered magnetically responsive in aqueous media by binding superparamagnetic magnetite nanoparticles 8.5-18.5 nm in diameter on the surface.
View Article and Find Full Text PDF